| Step | Hyp | Ref | Expression | 
						
							| 1 |  | haushmphlem.1 | ⊢ ( 𝐽  ∈  𝐴  →  𝐽  ∈  Top ) | 
						
							| 2 |  | haushmphlem.2 | ⊢ ( ( 𝐽  ∈  𝐴  ∧  𝑓 : ∪  𝐾 –1-1→ ∪  𝐽  ∧  𝑓  ∈  ( 𝐾  Cn  𝐽 ) )  →  𝐾  ∈  𝐴 ) | 
						
							| 3 |  | hmphsym | ⊢ ( 𝐽  ≃  𝐾  →  𝐾  ≃  𝐽 ) | 
						
							| 4 |  | hmph | ⊢ ( 𝐾  ≃  𝐽  ↔  ( 𝐾 Homeo 𝐽 )  ≠  ∅ ) | 
						
							| 5 |  | n0 | ⊢ ( ( 𝐾 Homeo 𝐽 )  ≠  ∅  ↔  ∃ 𝑓 𝑓  ∈  ( 𝐾 Homeo 𝐽 ) ) | 
						
							| 6 |  | simpl | ⊢ ( ( 𝐽  ∈  𝐴  ∧  𝑓  ∈  ( 𝐾 Homeo 𝐽 ) )  →  𝐽  ∈  𝐴 ) | 
						
							| 7 |  | eqid | ⊢ ∪  𝐾  =  ∪  𝐾 | 
						
							| 8 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 9 | 7 8 | hmeof1o | ⊢ ( 𝑓  ∈  ( 𝐾 Homeo 𝐽 )  →  𝑓 : ∪  𝐾 –1-1-onto→ ∪  𝐽 ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝐽  ∈  𝐴  ∧  𝑓  ∈  ( 𝐾 Homeo 𝐽 ) )  →  𝑓 : ∪  𝐾 –1-1-onto→ ∪  𝐽 ) | 
						
							| 11 |  | f1of1 | ⊢ ( 𝑓 : ∪  𝐾 –1-1-onto→ ∪  𝐽  →  𝑓 : ∪  𝐾 –1-1→ ∪  𝐽 ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( 𝐽  ∈  𝐴  ∧  𝑓  ∈  ( 𝐾 Homeo 𝐽 ) )  →  𝑓 : ∪  𝐾 –1-1→ ∪  𝐽 ) | 
						
							| 13 |  | hmeocn | ⊢ ( 𝑓  ∈  ( 𝐾 Homeo 𝐽 )  →  𝑓  ∈  ( 𝐾  Cn  𝐽 ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝐽  ∈  𝐴  ∧  𝑓  ∈  ( 𝐾 Homeo 𝐽 ) )  →  𝑓  ∈  ( 𝐾  Cn  𝐽 ) ) | 
						
							| 15 | 6 12 14 2 | syl3anc | ⊢ ( ( 𝐽  ∈  𝐴  ∧  𝑓  ∈  ( 𝐾 Homeo 𝐽 ) )  →  𝐾  ∈  𝐴 ) | 
						
							| 16 | 15 | expcom | ⊢ ( 𝑓  ∈  ( 𝐾 Homeo 𝐽 )  →  ( 𝐽  ∈  𝐴  →  𝐾  ∈  𝐴 ) ) | 
						
							| 17 | 16 | exlimiv | ⊢ ( ∃ 𝑓 𝑓  ∈  ( 𝐾 Homeo 𝐽 )  →  ( 𝐽  ∈  𝐴  →  𝐾  ∈  𝐴 ) ) | 
						
							| 18 | 5 17 | sylbi | ⊢ ( ( 𝐾 Homeo 𝐽 )  ≠  ∅  →  ( 𝐽  ∈  𝐴  →  𝐾  ∈  𝐴 ) ) | 
						
							| 19 | 4 18 | sylbi | ⊢ ( 𝐾  ≃  𝐽  →  ( 𝐽  ∈  𝐴  →  𝐾  ∈  𝐴 ) ) | 
						
							| 20 | 3 19 | syl | ⊢ ( 𝐽  ≃  𝐾  →  ( 𝐽  ∈  𝐴  →  𝐾  ∈  𝐴 ) ) |