Metamath Proof Explorer


Theorem hauspwpwdom

Description: If X is a Hausdorff space, then the cardinality of the closure of a set A is bounded by the double powerset of A . In particular, a Hausdorff space with a dense subset A has cardinality at most ~P ~P A , and a separable Hausdorff space has cardinality at most ~P ~P NN . (Contributed by Mario Carneiro, 9-Apr-2015) (Revised by Mario Carneiro, 28-Jul-2015)

Ref Expression
Hypothesis hauspwpwf1.x 𝑋 = 𝐽
Assertion hauspwpwdom ( ( 𝐽 ∈ Haus ∧ 𝐴𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ≼ 𝒫 𝒫 𝐴 )

Proof

Step Hyp Ref Expression
1 hauspwpwf1.x 𝑋 = 𝐽
2 fvexd ( ( 𝐽 ∈ Haus ∧ 𝐴𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∈ V )
3 haustop ( 𝐽 ∈ Haus → 𝐽 ∈ Top )
4 1 topopn ( 𝐽 ∈ Top → 𝑋𝐽 )
5 3 4 syl ( 𝐽 ∈ Haus → 𝑋𝐽 )
6 5 adantr ( ( 𝐽 ∈ Haus ∧ 𝐴𝑋 ) → 𝑋𝐽 )
7 simpr ( ( 𝐽 ∈ Haus ∧ 𝐴𝑋 ) → 𝐴𝑋 )
8 6 7 ssexd ( ( 𝐽 ∈ Haus ∧ 𝐴𝑋 ) → 𝐴 ∈ V )
9 pwexg ( 𝐴 ∈ V → 𝒫 𝐴 ∈ V )
10 pwexg ( 𝒫 𝐴 ∈ V → 𝒫 𝒫 𝐴 ∈ V )
11 8 9 10 3syl ( ( 𝐽 ∈ Haus ∧ 𝐴𝑋 ) → 𝒫 𝒫 𝐴 ∈ V )
12 eqid ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↦ { 𝑧 ∣ ∃ 𝑦𝐽 ( 𝑥𝑦𝑧 = ( 𝑦𝐴 ) ) } ) = ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↦ { 𝑧 ∣ ∃ 𝑦𝐽 ( 𝑥𝑦𝑧 = ( 𝑦𝐴 ) ) } )
13 1 12 hauspwpwf1 ( ( 𝐽 ∈ Haus ∧ 𝐴𝑋 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↦ { 𝑧 ∣ ∃ 𝑦𝐽 ( 𝑥𝑦𝑧 = ( 𝑦𝐴 ) ) } ) : ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) –1-1→ 𝒫 𝒫 𝐴 )
14 f1dom2g ( ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∈ V ∧ 𝒫 𝒫 𝐴 ∈ V ∧ ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↦ { 𝑧 ∣ ∃ 𝑦𝐽 ( 𝑥𝑦𝑧 = ( 𝑦𝐴 ) ) } ) : ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) –1-1→ 𝒫 𝒫 𝐴 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ≼ 𝒫 𝒫 𝐴 )
15 2 11 13 14 syl3anc ( ( 𝐽 ∈ Haus ∧ 𝐴𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ≼ 𝒫 𝒫 𝐴 )