| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tsmscl.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | tsmscl.1 | ⊢ ( 𝜑  →  𝐺  ∈  CMnd ) | 
						
							| 3 |  | tsmscl.2 | ⊢ ( 𝜑  →  𝐺  ∈  TopSp ) | 
						
							| 4 |  | tsmscl.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 5 |  | tsmscl.f | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 6 |  | haustsms.j | ⊢ 𝐽  =  ( TopOpen ‘ 𝐺 ) | 
						
							| 7 |  | haustsms.h | ⊢ ( 𝜑  →  𝐽  ∈  Haus ) | 
						
							| 8 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝐺  tsums  𝐹 ) )  →  𝑋  ∈  ( 𝐺  tsums  𝐹 ) ) | 
						
							| 9 | 1 2 3 4 5 6 7 | haustsms | ⊢ ( 𝜑  →  ∃* 𝑥 𝑥  ∈  ( 𝐺  tsums  𝐹 ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝐺  tsums  𝐹 ) )  →  ∃* 𝑥 𝑥  ∈  ( 𝐺  tsums  𝐹 ) ) | 
						
							| 11 |  | eleq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  ∈  ( 𝐺  tsums  𝐹 )  ↔  𝑋  ∈  ( 𝐺  tsums  𝐹 ) ) ) | 
						
							| 12 | 11 | moi2 | ⊢ ( ( ( 𝑋  ∈  ( 𝐺  tsums  𝐹 )  ∧  ∃* 𝑥 𝑥  ∈  ( 𝐺  tsums  𝐹 ) )  ∧  ( 𝑥  ∈  ( 𝐺  tsums  𝐹 )  ∧  𝑋  ∈  ( 𝐺  tsums  𝐹 ) ) )  →  𝑥  =  𝑋 ) | 
						
							| 13 | 12 | ancom2s | ⊢ ( ( ( 𝑋  ∈  ( 𝐺  tsums  𝐹 )  ∧  ∃* 𝑥 𝑥  ∈  ( 𝐺  tsums  𝐹 ) )  ∧  ( 𝑋  ∈  ( 𝐺  tsums  𝐹 )  ∧  𝑥  ∈  ( 𝐺  tsums  𝐹 ) ) )  →  𝑥  =  𝑋 ) | 
						
							| 14 | 13 | expr | ⊢ ( ( ( 𝑋  ∈  ( 𝐺  tsums  𝐹 )  ∧  ∃* 𝑥 𝑥  ∈  ( 𝐺  tsums  𝐹 ) )  ∧  𝑋  ∈  ( 𝐺  tsums  𝐹 ) )  →  ( 𝑥  ∈  ( 𝐺  tsums  𝐹 )  →  𝑥  =  𝑋 ) ) | 
						
							| 15 | 8 10 8 14 | syl21anc | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝐺  tsums  𝐹 ) )  →  ( 𝑥  ∈  ( 𝐺  tsums  𝐹 )  →  𝑥  =  𝑋 ) ) | 
						
							| 16 |  | velsn | ⊢ ( 𝑥  ∈  { 𝑋 }  ↔  𝑥  =  𝑋 ) | 
						
							| 17 | 15 16 | imbitrrdi | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝐺  tsums  𝐹 ) )  →  ( 𝑥  ∈  ( 𝐺  tsums  𝐹 )  →  𝑥  ∈  { 𝑋 } ) ) | 
						
							| 18 | 17 | ssrdv | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝐺  tsums  𝐹 ) )  →  ( 𝐺  tsums  𝐹 )  ⊆  { 𝑋 } ) | 
						
							| 19 |  | snssi | ⊢ ( 𝑋  ∈  ( 𝐺  tsums  𝐹 )  →  { 𝑋 }  ⊆  ( 𝐺  tsums  𝐹 ) ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝐺  tsums  𝐹 ) )  →  { 𝑋 }  ⊆  ( 𝐺  tsums  𝐹 ) ) | 
						
							| 21 | 18 20 | eqssd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝐺  tsums  𝐹 ) )  →  ( 𝐺  tsums  𝐹 )  =  { 𝑋 } ) | 
						
							| 22 | 21 | ex | ⊢ ( 𝜑  →  ( 𝑋  ∈  ( 𝐺  tsums  𝐹 )  →  ( 𝐺  tsums  𝐹 )  =  { 𝑋 } ) ) |