Step |
Hyp |
Ref |
Expression |
1 |
|
tsmscl.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
tsmscl.1 |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
3 |
|
tsmscl.2 |
⊢ ( 𝜑 → 𝐺 ∈ TopSp ) |
4 |
|
tsmscl.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
5 |
|
tsmscl.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
6 |
|
haustsms.j |
⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) |
7 |
|
haustsms.h |
⊢ ( 𝜑 → 𝐽 ∈ Haus ) |
8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) |
9 |
1 2 3 4 5 6 7
|
haustsms |
⊢ ( 𝜑 → ∃* 𝑥 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) → ∃* 𝑥 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) |
11 |
|
eleq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ↔ 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) ) |
12 |
11
|
moi2 |
⊢ ( ( ( 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ∧ ∃* 𝑥 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) ∧ ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ∧ 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) ) → 𝑥 = 𝑋 ) |
13 |
12
|
ancom2s |
⊢ ( ( ( 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ∧ ∃* 𝑥 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) ∧ ( 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) ) → 𝑥 = 𝑋 ) |
14 |
13
|
expr |
⊢ ( ( ( 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ∧ ∃* 𝑥 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) ∧ 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) → 𝑥 = 𝑋 ) ) |
15 |
8 10 8 14
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) → 𝑥 = 𝑋 ) ) |
16 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝑋 } ↔ 𝑥 = 𝑋 ) |
17 |
15 16
|
syl6ibr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) → 𝑥 ∈ { 𝑋 } ) ) |
18 |
17
|
ssrdv |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝐺 tsums 𝐹 ) ⊆ { 𝑋 } ) |
19 |
|
snssi |
⊢ ( 𝑋 ∈ ( 𝐺 tsums 𝐹 ) → { 𝑋 } ⊆ ( 𝐺 tsums 𝐹 ) ) |
20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) → { 𝑋 } ⊆ ( 𝐺 tsums 𝐹 ) ) |
21 |
18 20
|
eqssd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝐺 tsums 𝐹 ) = { 𝑋 } ) |
22 |
21
|
ex |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐺 tsums 𝐹 ) → ( 𝐺 tsums 𝐹 ) = { 𝑋 } ) ) |