Metamath Proof Explorer


Theorem haustsms2

Description: In a Hausdorff topological group, a sum has at most one limit point. (Contributed by Mario Carneiro, 13-Sep-2015)

Ref Expression
Hypotheses tsmscl.b 𝐵 = ( Base ‘ 𝐺 )
tsmscl.1 ( 𝜑𝐺 ∈ CMnd )
tsmscl.2 ( 𝜑𝐺 ∈ TopSp )
tsmscl.a ( 𝜑𝐴𝑉 )
tsmscl.f ( 𝜑𝐹 : 𝐴𝐵 )
haustsms.j 𝐽 = ( TopOpen ‘ 𝐺 )
haustsms.h ( 𝜑𝐽 ∈ Haus )
Assertion haustsms2 ( 𝜑 → ( 𝑋 ∈ ( 𝐺 tsums 𝐹 ) → ( 𝐺 tsums 𝐹 ) = { 𝑋 } ) )

Proof

Step Hyp Ref Expression
1 tsmscl.b 𝐵 = ( Base ‘ 𝐺 )
2 tsmscl.1 ( 𝜑𝐺 ∈ CMnd )
3 tsmscl.2 ( 𝜑𝐺 ∈ TopSp )
4 tsmscl.a ( 𝜑𝐴𝑉 )
5 tsmscl.f ( 𝜑𝐹 : 𝐴𝐵 )
6 haustsms.j 𝐽 = ( TopOpen ‘ 𝐺 )
7 haustsms.h ( 𝜑𝐽 ∈ Haus )
8 simpr ( ( 𝜑𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝑋 ∈ ( 𝐺 tsums 𝐹 ) )
9 1 2 3 4 5 6 7 haustsms ( 𝜑 → ∃* 𝑥 𝑥 ∈ ( 𝐺 tsums 𝐹 ) )
10 9 adantr ( ( 𝜑𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) → ∃* 𝑥 𝑥 ∈ ( 𝐺 tsums 𝐹 ) )
11 eleq1 ( 𝑥 = 𝑋 → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ↔ 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) )
12 11 moi2 ( ( ( 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ∧ ∃* 𝑥 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) ∧ ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ∧ 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) ) → 𝑥 = 𝑋 )
13 12 ancom2s ( ( ( 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ∧ ∃* 𝑥 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) ∧ ( 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) ) → 𝑥 = 𝑋 )
14 13 expr ( ( ( 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ∧ ∃* 𝑥 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) ∧ 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) → 𝑥 = 𝑋 ) )
15 8 10 8 14 syl21anc ( ( 𝜑𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) → 𝑥 = 𝑋 ) )
16 velsn ( 𝑥 ∈ { 𝑋 } ↔ 𝑥 = 𝑋 )
17 15 16 syl6ibr ( ( 𝜑𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) → 𝑥 ∈ { 𝑋 } ) )
18 17 ssrdv ( ( 𝜑𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝐺 tsums 𝐹 ) ⊆ { 𝑋 } )
19 snssi ( 𝑋 ∈ ( 𝐺 tsums 𝐹 ) → { 𝑋 } ⊆ ( 𝐺 tsums 𝐹 ) )
20 19 adantl ( ( 𝜑𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) → { 𝑋 } ⊆ ( 𝐺 tsums 𝐹 ) )
21 18 20 eqssd ( ( 𝜑𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝐺 tsums 𝐹 ) = { 𝑋 } )
22 21 ex ( 𝜑 → ( 𝑋 ∈ ( 𝐺 tsums 𝐹 ) → ( 𝐺 tsums 𝐹 ) = { 𝑋 } ) )