Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Predicate calculus with equality: Auxiliary axiom schemes (4 schemes)
Axiom scheme ax-12 (Substitution)
hb3an
Metamath Proof Explorer
Description: If x is not free in ph , ps , and ch , it is not free in
( ph /\ ps /\ ch ) . (Contributed by NM , 14-Sep-2003) (Proof
shortened by Wolf Lammen , 2-Jan-2018)
Ref
Expression
Hypotheses
hb.1
⊢ ( 𝜑 → ∀ 𝑥 𝜑 )
hb.2
⊢ ( 𝜓 → ∀ 𝑥 𝜓 )
hb.3
⊢ ( 𝜒 → ∀ 𝑥 𝜒 )
Assertion
hb3an
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ∀ 𝑥 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) )
Proof
Step
Hyp
Ref
Expression
1
hb.1
⊢ ( 𝜑 → ∀ 𝑥 𝜑 )
2
hb.2
⊢ ( 𝜓 → ∀ 𝑥 𝜓 )
3
hb.3
⊢ ( 𝜒 → ∀ 𝑥 𝜒 )
4
1
nf5i
⊢ Ⅎ 𝑥 𝜑
5
2
nf5i
⊢ Ⅎ 𝑥 𝜓
6
3
nf5i
⊢ Ⅎ 𝑥 𝜒
7
4 5 6
nf3an
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝜓 ∧ 𝜒 )
8
7
nf5ri
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ∀ 𝑥 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) )