Metamath Proof Explorer


Theorem hb3an

Description: If x is not free in ph , ps , and ch , it is not free in ( ph /\ ps /\ ch ) . (Contributed by NM, 14-Sep-2003) (Proof shortened by Wolf Lammen, 2-Jan-2018)

Ref Expression
Hypotheses hb.1 ( 𝜑 → ∀ 𝑥 𝜑 )
hb.2 ( 𝜓 → ∀ 𝑥 𝜓 )
hb.3 ( 𝜒 → ∀ 𝑥 𝜒 )
Assertion hb3an ( ( 𝜑𝜓𝜒 ) → ∀ 𝑥 ( 𝜑𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 hb.1 ( 𝜑 → ∀ 𝑥 𝜑 )
2 hb.2 ( 𝜓 → ∀ 𝑥 𝜓 )
3 hb.3 ( 𝜒 → ∀ 𝑥 𝜒 )
4 1 nf5i 𝑥 𝜑
5 2 nf5i 𝑥 𝜓
6 3 nf5i 𝑥 𝜒
7 4 5 6 nf3an 𝑥 ( 𝜑𝜓𝜒 )
8 7 nf5ri ( ( 𝜑𝜓𝜒 ) → ∀ 𝑥 ( 𝜑𝜓𝜒 ) )