Metamath Proof Explorer


Theorem hba1-o

Description: The setvar x is not free in A. x ph . Example in Appendix in Megill p. 450 (p. 19 of the preprint). Also Lemma 22 of Monk2 p. 114. (Contributed by NM, 24-Jan-1993) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion hba1-o ( ∀ 𝑥 𝜑 → ∀ 𝑥𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 ax-c5 ( ∀ 𝑥 ¬ ∀ 𝑥 𝜑 → ¬ ∀ 𝑥 𝜑 )
2 1 con2i ( ∀ 𝑥 𝜑 → ¬ ∀ 𝑥 ¬ ∀ 𝑥 𝜑 )
3 ax10fromc7 ( ¬ ∀ 𝑥 ¬ ∀ 𝑥 𝜑 → ∀ 𝑥 ¬ ∀ 𝑥 ¬ ∀ 𝑥 𝜑 )
4 ax10fromc7 ( ¬ ∀ 𝑥 𝜑 → ∀ 𝑥 ¬ ∀ 𝑥 𝜑 )
5 4 con1i ( ¬ ∀ 𝑥 ¬ ∀ 𝑥 𝜑 → ∀ 𝑥 𝜑 )
6 5 alimi ( ∀ 𝑥 ¬ ∀ 𝑥 ¬ ∀ 𝑥 𝜑 → ∀ 𝑥𝑥 𝜑 )
7 2 3 6 3syl ( ∀ 𝑥 𝜑 → ∀ 𝑥𝑥 𝜑 )