Metamath Proof Explorer


Theorem hbab

Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by NM, 1-Mar-1995) Add disjoint variable condition to avoid ax-13 . See hbabg for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024)

Ref Expression
Hypothesis hbab.1 ( 𝜑 → ∀ 𝑥 𝜑 )
Assertion hbab ( 𝑧 ∈ { 𝑦𝜑 } → ∀ 𝑥 𝑧 ∈ { 𝑦𝜑 } )

Proof

Step Hyp Ref Expression
1 hbab.1 ( 𝜑 → ∀ 𝑥 𝜑 )
2 df-clab ( 𝑧 ∈ { 𝑦𝜑 } ↔ [ 𝑧 / 𝑦 ] 𝜑 )
3 1 hbsbw ( [ 𝑧 / 𝑦 ] 𝜑 → ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 )
4 2 3 hbxfrbi ( 𝑧 ∈ { 𝑦𝜑 } → ∀ 𝑥 𝑧 ∈ { 𝑦𝜑 } )