Step |
Hyp |
Ref |
Expression |
1 |
|
ax-c5 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
2 |
|
ax-c9 |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑥 → ( ¬ ∀ 𝑧 𝑧 = 𝑦 → ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) ) |
3 |
1 2
|
syl7 |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑥 → ( ¬ ∀ 𝑧 𝑧 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) ) |
4 |
|
ax-c11 |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) |
5 |
4
|
aecoms-o |
⊢ ( ∀ 𝑧 𝑧 = 𝑥 → ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) |
6 |
|
ax-c11 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 𝑥 = 𝑦 ) ) |
7 |
6
|
pm2.43i |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 𝑥 = 𝑦 ) |
8 |
|
ax-c11 |
⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑦 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) |
9 |
7 8
|
syl5 |
⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) |
10 |
9
|
aecoms-o |
⊢ ( ∀ 𝑧 𝑧 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) |
11 |
3 5 10
|
pm2.61ii |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) |
12 |
11
|
axc4i-o |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑥 ∀ 𝑧 𝑥 = 𝑦 ) |
13 |
|
ax-11 |
⊢ ( ∀ 𝑥 ∀ 𝑧 𝑥 = 𝑦 → ∀ 𝑧 ∀ 𝑥 𝑥 = 𝑦 ) |
14 |
12 13
|
syl |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 ∀ 𝑥 𝑥 = 𝑦 ) |