| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-c5 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
| 2 |
|
ax-c9 |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑥 → ( ¬ ∀ 𝑧 𝑧 = 𝑦 → ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) ) |
| 3 |
1 2
|
syl7 |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑥 → ( ¬ ∀ 𝑧 𝑧 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) ) |
| 4 |
|
ax-c11 |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) |
| 5 |
4
|
aecoms-o |
⊢ ( ∀ 𝑧 𝑧 = 𝑥 → ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) |
| 6 |
|
ax-c11 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 𝑥 = 𝑦 ) ) |
| 7 |
6
|
pm2.43i |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 𝑥 = 𝑦 ) |
| 8 |
|
ax-c11 |
⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑦 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) |
| 9 |
7 8
|
syl5 |
⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) |
| 10 |
9
|
aecoms-o |
⊢ ( ∀ 𝑧 𝑧 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) |
| 11 |
3 5 10
|
pm2.61ii |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) |
| 12 |
11
|
axc4i-o |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑥 ∀ 𝑧 𝑥 = 𝑦 ) |
| 13 |
|
ax-11 |
⊢ ( ∀ 𝑥 ∀ 𝑧 𝑥 = 𝑦 → ∀ 𝑧 ∀ 𝑥 𝑥 = 𝑦 ) |
| 14 |
12 13
|
syl |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 ∀ 𝑥 𝑥 = 𝑦 ) |