Metamath Proof Explorer


Theorem hbe1

Description: The setvar x is not free in E. x ph . Corresponds to the axiom (5) of modal logic (see also modal5 ). (Contributed by NM, 24-Jan-1993)

Ref Expression
Assertion hbe1 ( ∃ 𝑥 𝜑 → ∀ 𝑥𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 df-ex ( ∃ 𝑥 𝜑 ↔ ¬ ∀ 𝑥 ¬ 𝜑 )
2 hbn1 ( ¬ ∀ 𝑥 ¬ 𝜑 → ∀ 𝑥 ¬ ∀ 𝑥 ¬ 𝜑 )
3 1 2 hbxfrbi ( ∃ 𝑥 𝜑 → ∀ 𝑥𝑥 𝜑 )