Metamath Proof Explorer
Description: The setvar x is not free in E. x ph . Corresponds to the axiom
(5) of modal logic (see also modal5 ). (Contributed by NM, 24-Jan-1993)
|
|
Ref |
Expression |
|
Assertion |
hbe1 |
⊢ ( ∃ 𝑥 𝜑 → ∀ 𝑥 ∃ 𝑥 𝜑 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
df-ex |
⊢ ( ∃ 𝑥 𝜑 ↔ ¬ ∀ 𝑥 ¬ 𝜑 ) |
2 |
|
hbn1 |
⊢ ( ¬ ∀ 𝑥 ¬ 𝜑 → ∀ 𝑥 ¬ ∀ 𝑥 ¬ 𝜑 ) |
3 |
1 2
|
hbxfrbi |
⊢ ( ∃ 𝑥 𝜑 → ∀ 𝑥 ∃ 𝑥 𝜑 ) |