Description: Dual statement of hbe1 . Modified version of axc7e with a universally quantified consequent. (Contributed by Wolf Lammen, 15-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | hbe1a | ⊢ ( ∃ 𝑥 ∀ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex | ⊢ ( ∃ 𝑥 ∀ 𝑥 𝜑 ↔ ¬ ∀ 𝑥 ¬ ∀ 𝑥 𝜑 ) | |
2 | hbn1 | ⊢ ( ¬ ∀ 𝑥 𝜑 → ∀ 𝑥 ¬ ∀ 𝑥 𝜑 ) | |
3 | 2 | con1i | ⊢ ( ¬ ∀ 𝑥 ¬ ∀ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) |
4 | 1 3 | sylbi | ⊢ ( ∃ 𝑥 ∀ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) |