Description: Dual statement of hbe1 . Modified version of axc7e with a universally quantified consequent. (Contributed by Wolf Lammen, 15-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hbe1a | ⊢ ( ∃ 𝑥 ∀ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ex | ⊢ ( ∃ 𝑥 ∀ 𝑥 𝜑 ↔ ¬ ∀ 𝑥 ¬ ∀ 𝑥 𝜑 ) | |
| 2 | hbn1 | ⊢ ( ¬ ∀ 𝑥 𝜑 → ∀ 𝑥 ¬ ∀ 𝑥 𝜑 ) | |
| 3 | 2 | con1i | ⊢ ( ¬ ∀ 𝑥 ¬ ∀ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) |
| 4 | 1 3 | sylbi | ⊢ ( ∃ 𝑥 ∀ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) |