Metamath Proof Explorer


Theorem hbe1a

Description: Dual statement of hbe1 . Modified version of axc7e with a universally quantified consequent. (Contributed by Wolf Lammen, 15-Sep-2021)

Ref Expression
Assertion hbe1a ( ∃ 𝑥𝑥 𝜑 → ∀ 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 df-ex ( ∃ 𝑥𝑥 𝜑 ↔ ¬ ∀ 𝑥 ¬ ∀ 𝑥 𝜑 )
2 hbn1 ( ¬ ∀ 𝑥 𝜑 → ∀ 𝑥 ¬ ∀ 𝑥 𝜑 )
3 2 con1i ( ¬ ∀ 𝑥 ¬ ∀ 𝑥 𝜑 → ∀ 𝑥 𝜑 )
4 1 3 sylbi ( ∃ 𝑥𝑥 𝜑 → ∀ 𝑥 𝜑 )