Step |
Hyp |
Ref |
Expression |
1 |
|
hba1 |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) → ∀ 𝑥 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) ) |
2 |
|
hba1 |
⊢ ( ∀ 𝑦 ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) → ∀ 𝑦 ∀ 𝑦 ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ) |
3 |
|
alcom |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) ↔ ∀ 𝑦 ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ) |
4 |
3
|
albii |
⊢ ( ∀ 𝑦 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) ↔ ∀ 𝑦 ∀ 𝑦 ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ) |
5 |
2 3 4
|
3imtr4i |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) → ∀ 𝑦 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) ) |
6 |
|
idn1 |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) ▶ ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) ) |
7 |
|
ax-11 |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) → ∀ 𝑦 ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ) |
8 |
6 7
|
e1a |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) ▶ ∀ 𝑦 ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ) |
9 |
|
sp |
⊢ ( ∀ 𝑦 ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) → ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ) |
10 |
8 9
|
e1a |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) ▶ ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ) |
11 |
|
hbntal |
⊢ ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) → ∀ 𝑥 ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) ) |
12 |
10 11
|
e1a |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) ▶ ∀ 𝑥 ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) ) |
13 |
5 12
|
gen11nv |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) ▶ ∀ 𝑦 ∀ 𝑥 ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) ) |
14 |
|
ax-11 |
⊢ ( ∀ 𝑦 ∀ 𝑥 ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) → ∀ 𝑥 ∀ 𝑦 ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) ) |
15 |
13 14
|
e1a |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) ▶ ∀ 𝑥 ∀ 𝑦 ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) ) |
16 |
|
sp |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) → ∀ 𝑦 ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) ) |
17 |
15 16
|
e1a |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) ▶ ∀ 𝑦 ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) ) |
18 |
|
hbalg |
⊢ ( ∀ 𝑦 ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) → ∀ 𝑦 ( ∀ 𝑦 ¬ 𝜑 → ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 ) ) |
19 |
17 18
|
e1a |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) ▶ ∀ 𝑦 ( ∀ 𝑦 ¬ 𝜑 → ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 ) ) |
20 |
|
sp |
⊢ ( ∀ 𝑦 ( ∀ 𝑦 ¬ 𝜑 → ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 ) → ( ∀ 𝑦 ¬ 𝜑 → ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 ) ) |
21 |
19 20
|
e1a |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) ▶ ( ∀ 𝑦 ¬ 𝜑 → ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 ) ) |
22 |
1 21
|
gen11nv |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) ▶ ∀ 𝑥 ( ∀ 𝑦 ¬ 𝜑 → ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 ) ) |
23 |
|
hbntal |
⊢ ( ∀ 𝑥 ( ∀ 𝑦 ¬ 𝜑 → ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 ) → ∀ 𝑥 ( ¬ ∀ 𝑦 ¬ 𝜑 → ∀ 𝑥 ¬ ∀ 𝑦 ¬ 𝜑 ) ) |
24 |
22 23
|
e1a |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) ▶ ∀ 𝑥 ( ¬ ∀ 𝑦 ¬ 𝜑 → ∀ 𝑥 ¬ ∀ 𝑦 ¬ 𝜑 ) ) |
25 |
|
sp |
⊢ ( ∀ 𝑥 ( ¬ ∀ 𝑦 ¬ 𝜑 → ∀ 𝑥 ¬ ∀ 𝑦 ¬ 𝜑 ) → ( ¬ ∀ 𝑦 ¬ 𝜑 → ∀ 𝑥 ¬ ∀ 𝑦 ¬ 𝜑 ) ) |
26 |
24 25
|
e1a |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) ▶ ( ¬ ∀ 𝑦 ¬ 𝜑 → ∀ 𝑥 ¬ ∀ 𝑦 ¬ 𝜑 ) ) |
27 |
|
df-ex |
⊢ ( ∃ 𝑦 𝜑 ↔ ¬ ∀ 𝑦 ¬ 𝜑 ) |
28 |
|
imbi1 |
⊢ ( ( ∃ 𝑦 𝜑 ↔ ¬ ∀ 𝑦 ¬ 𝜑 ) → ( ( ∃ 𝑦 𝜑 → ∀ 𝑥 ¬ ∀ 𝑦 ¬ 𝜑 ) ↔ ( ¬ ∀ 𝑦 ¬ 𝜑 → ∀ 𝑥 ¬ ∀ 𝑦 ¬ 𝜑 ) ) ) |
29 |
28
|
biimprcd |
⊢ ( ( ¬ ∀ 𝑦 ¬ 𝜑 → ∀ 𝑥 ¬ ∀ 𝑦 ¬ 𝜑 ) → ( ( ∃ 𝑦 𝜑 ↔ ¬ ∀ 𝑦 ¬ 𝜑 ) → ( ∃ 𝑦 𝜑 → ∀ 𝑥 ¬ ∀ 𝑦 ¬ 𝜑 ) ) ) |
30 |
26 27 29
|
e10 |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) ▶ ( ∃ 𝑦 𝜑 → ∀ 𝑥 ¬ ∀ 𝑦 ¬ 𝜑 ) ) |
31 |
27
|
albii |
⊢ ( ∀ 𝑥 ∃ 𝑦 𝜑 ↔ ∀ 𝑥 ¬ ∀ 𝑦 ¬ 𝜑 ) |
32 |
|
imbi2 |
⊢ ( ( ∀ 𝑥 ∃ 𝑦 𝜑 ↔ ∀ 𝑥 ¬ ∀ 𝑦 ¬ 𝜑 ) → ( ( ∃ 𝑦 𝜑 → ∀ 𝑥 ∃ 𝑦 𝜑 ) ↔ ( ∃ 𝑦 𝜑 → ∀ 𝑥 ¬ ∀ 𝑦 ¬ 𝜑 ) ) ) |
33 |
32
|
biimprcd |
⊢ ( ( ∃ 𝑦 𝜑 → ∀ 𝑥 ¬ ∀ 𝑦 ¬ 𝜑 ) → ( ( ∀ 𝑥 ∃ 𝑦 𝜑 ↔ ∀ 𝑥 ¬ ∀ 𝑦 ¬ 𝜑 ) → ( ∃ 𝑦 𝜑 → ∀ 𝑥 ∃ 𝑦 𝜑 ) ) ) |
34 |
30 31 33
|
e10 |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) ▶ ( ∃ 𝑦 𝜑 → ∀ 𝑥 ∃ 𝑦 𝜑 ) ) |
35 |
5 34
|
gen11nv |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) ▶ ∀ 𝑦 ( ∃ 𝑦 𝜑 → ∀ 𝑥 ∃ 𝑦 𝜑 ) ) |
36 |
1 35
|
gen11nv |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) ▶ ∀ 𝑥 ∀ 𝑦 ( ∃ 𝑦 𝜑 → ∀ 𝑥 ∃ 𝑦 𝜑 ) ) |
37 |
36
|
in1 |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) → ∀ 𝑥 ∀ 𝑦 ( ∃ 𝑦 𝜑 → ∀ 𝑥 ∃ 𝑦 𝜑 ) ) |