Metamath Proof Explorer


Theorem hbim1

Description: A closed form of hbim . (Contributed by NM, 2-Jun-1993)

Ref Expression
Hypotheses hbim1.1 ( 𝜑 → ∀ 𝑥 𝜑 )
hbim1.2 ( 𝜑 → ( 𝜓 → ∀ 𝑥 𝜓 ) )
Assertion hbim1 ( ( 𝜑𝜓 ) → ∀ 𝑥 ( 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 hbim1.1 ( 𝜑 → ∀ 𝑥 𝜑 )
2 hbim1.2 ( 𝜑 → ( 𝜓 → ∀ 𝑥 𝜓 ) )
3 2 a2i ( ( 𝜑𝜓 ) → ( 𝜑 → ∀ 𝑥 𝜓 ) )
4 1 19.21h ( ∀ 𝑥 ( 𝜑𝜓 ) ↔ ( 𝜑 → ∀ 𝑥 𝜓 ) )
5 3 4 sylibr ( ( 𝜑𝜓 ) → ∀ 𝑥 ( 𝜑𝜓 ) )