Description: A closed form of hbim . (Contributed by NM, 2-Jun-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hbim1.1 | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | |
| hbim1.2 | ⊢ ( 𝜑 → ( 𝜓 → ∀ 𝑥 𝜓 ) ) | ||
| Assertion | hbim1 | ⊢ ( ( 𝜑 → 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbim1.1 | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | |
| 2 | hbim1.2 | ⊢ ( 𝜑 → ( 𝜓 → ∀ 𝑥 𝜓 ) ) | |
| 3 | 2 | a2i | ⊢ ( ( 𝜑 → 𝜓 ) → ( 𝜑 → ∀ 𝑥 𝜓 ) ) |
| 4 | 1 | 19.21h | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → ∀ 𝑥 𝜓 ) ) |
| 5 | 3 4 | sylibr | ⊢ ( ( 𝜑 → 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) |