Metamath Proof Explorer


Theorem hbimd

Description: Deduction form of bound-variable hypothesis builder hbim . (Contributed by NM, 14-May-1993) (Proof shortened by Wolf Lammen, 3-Jan-2018)

Ref Expression
Hypotheses hbimd.1 ( 𝜑 → ∀ 𝑥 𝜑 )
hbimd.2 ( 𝜑 → ( 𝜓 → ∀ 𝑥 𝜓 ) )
hbimd.3 ( 𝜑 → ( 𝜒 → ∀ 𝑥 𝜒 ) )
Assertion hbimd ( 𝜑 → ( ( 𝜓𝜒 ) → ∀ 𝑥 ( 𝜓𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 hbimd.1 ( 𝜑 → ∀ 𝑥 𝜑 )
2 hbimd.2 ( 𝜑 → ( 𝜓 → ∀ 𝑥 𝜓 ) )
3 hbimd.3 ( 𝜑 → ( 𝜒 → ∀ 𝑥 𝜒 ) )
4 1 2 nf5dh ( 𝜑 → Ⅎ 𝑥 𝜓 )
5 1 3 nf5dh ( 𝜑 → Ⅎ 𝑥 𝜒 )
6 4 5 nfimd ( 𝜑 → Ⅎ 𝑥 ( 𝜓𝜒 ) )
7 6 nf5rd ( 𝜑 → ( ( 𝜓𝜒 ) → ∀ 𝑥 ( 𝜓𝜒 ) ) )