Step |
Hyp |
Ref |
Expression |
1 |
|
hba1 |
⊢ ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) → ∀ 𝑥 ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ) |
2 |
|
hba1 |
⊢ ( ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) → ∀ 𝑥 ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) |
3 |
1 2
|
hban |
⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) → ∀ 𝑥 ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) ) |
4 |
|
hbntal |
⊢ ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) → ∀ 𝑥 ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) ) |
5 |
4
|
adantr |
⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) → ∀ 𝑥 ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) ) |
6 |
5
|
19.21bi |
⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) → ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) ) |
7 |
|
pm2.21 |
⊢ ( ¬ 𝜑 → ( 𝜑 → 𝜓 ) ) |
8 |
7
|
alimi |
⊢ ( ∀ 𝑥 ¬ 𝜑 → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) |
9 |
6 8
|
syl6 |
⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) → ( ¬ 𝜑 → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) |
10 |
|
simpr |
⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) → ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) |
11 |
10
|
19.21bi |
⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) → ( 𝜓 → ∀ 𝑥 𝜓 ) ) |
12 |
|
ax-1 |
⊢ ( 𝜓 → ( 𝜑 → 𝜓 ) ) |
13 |
12
|
alimi |
⊢ ( ∀ 𝑥 𝜓 → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) |
14 |
11 13
|
syl6 |
⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) → ( 𝜓 → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) |
15 |
9 14
|
jad |
⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) → ( ( 𝜑 → 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) |
16 |
3 15
|
alrimih |
⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) → ∀ 𝑥 ( ( 𝜑 → 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) |