Description: Virtual deduction proof of hbimpg . The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbimpg is hbimpgVD without virtual deductions and was automatically derived from hbimpgVD . (Contributed by Alan Sare, 8-Feb-2014) (Proof modification is discouraged.) (New usage is discouraged.)
1:: | |- (. ( A. x ( ph -> A. x ph ) /\ A. x ( ps -> A. x ps ) ) ->. ( A. x ( ph -> A. x ph ) /\ A. x ( ps -> A. x ps ) ) ). |
2:1: | |- (. ( A. x ( ph -> A. x ph ) /\ A. x ( ps -> A. x ps ) ) ->. A. x ( ph -> A. x ph ) ). |
3:: | |- (. ( A. x ( ph -> A. x ph ) /\ A. x ( ps -> A. x ps ) ) , -. ph ->. -. ph ). |
4:2: | |- (. ( A. x ( ph -> A. x ph ) /\ A. x ( ps -> A. x ps ) ) ->. A. x ( -. ph -> A. x -. ph ) ). |
5:4: | |- (. ( A. x ( ph -> A. x ph ) /\ A. x ( ps -> A. x ps ) ) ->. ( -. ph -> A. x -. ph ) ). |
6:3,5: | |- (. ( A. x ( ph -> A. x ph ) /\ A. x ( ps -> A. x ps ) ) , -. ph ->. A. x -. ph ). |
7:: | |- ( -. ph -> ( ph -> ps ) ) |
8:7: | |- ( A. x -. ph -> A. x ( ph -> ps ) ) |
9:6,8: | |- (. ( A. x ( ph -> A. x ph ) /\ A. x ( ps -> A. x ps ) ) , -. ph ->. A. x ( ph -> ps ) ). |
10:9: | |- (. ( A. x ( ph -> A. x ph ) /\ A. x ( ps -> A. x ps ) ) ->. ( -. ph -> A. x ( ph -> ps ) ) ). |
11:: | |- ( ps -> ( ph -> ps ) ) |
12:11: | |- ( A. x ps -> A. x ( ph -> ps ) ) |
13:1: | |- (. ( A. x ( ph -> A. x ph ) /\ A. x ( ps -> A. x ps ) ) ->. A. x ( ps -> A. x ps ) ). |
14:13: | |- (. ( A. x ( ph -> A. x ph ) /\ A. x ( ps -> A. x ps ) ) ->. ( ps -> A. x ps ) ). |
15:14,12: | |- (. ( A. x ( ph -> A. x ph ) /\ A. x ( ps -> A. x ps ) ) ->. ( ps -> A. x ( ph -> ps ) ) ). |
16:10,15: | |- (. ( A. x ( ph -> A. x ph ) /\ A. x ( ps -> A. x ps ) ) ->. ( ( -. ph \/ ps ) -> A. x ( ph -> ps ) ) ). |
17:: | |- ( ( ph -> ps ) <-> ( -. ph \/ ps ) ) |
18:16,17: | |- (. ( A. x ( ph -> A. x ph ) /\ A. x ( ps -> A. x ps ) ) ->. ( ( ph -> ps ) -> A. x ( ph -> ps ) ) ). |
19:: | |- ( A. x ( ph -> A. x ph ) -> A. x A. x ( ph -> A. x ph ) ) |
20:: | |- ( A. x ( ps -> A. x ps ) -> A. x A. x ( ps -> A. x ps ) ) |
21:19,20: | |- ( ( A. x ( ph -> A. x ph ) /\ A. x ( ps -> A. x ps ) ) -> A. x ( A. x ( ph -> A. x ph ) /\ A. x ( ps -> A. x ps ) ) ) |
22:21,18: | |- (. ( A. x ( ph -> A. x ph ) /\ A. x ( ps -> A. x ps ) ) ->. A. x ( ( ph -> ps ) -> A. x ( ph -> ps ) ) ). |
qed:22: | |- ( ( A. x ( ph -> A. x ph ) /\ A. x ( ps -> A. x ps ) ) -> A. x ( ( ph -> ps ) -> A. x ( ph -> ps ) ) ) |
Ref | Expression | ||
---|---|---|---|
Assertion | hbimpgVD | ⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) → ∀ 𝑥 ( ( 𝜑 → 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hba1 | ⊢ ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) → ∀ 𝑥 ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ) | |
2 | hba1 | ⊢ ( ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) → ∀ 𝑥 ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) | |
3 | 1 2 | hban | ⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) → ∀ 𝑥 ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) ) |
4 | idn2 | ⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) , ¬ 𝜑 ▶ ¬ 𝜑 ) | |
5 | idn1 | ⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) ▶ ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) ) | |
6 | simpl | ⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) → ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ) | |
7 | 5 6 | e1a | ⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) ▶ ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ) |
8 | hbntal | ⊢ ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) → ∀ 𝑥 ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) ) | |
9 | 7 8 | e1a | ⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) ▶ ∀ 𝑥 ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) ) |
10 | sp | ⊢ ( ∀ 𝑥 ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) → ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) ) | |
11 | 9 10 | e1a | ⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) ▶ ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) ) |
12 | pm2.27 | ⊢ ( ¬ 𝜑 → ( ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) → ∀ 𝑥 ¬ 𝜑 ) ) | |
13 | 4 11 12 | e21 | ⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) , ¬ 𝜑 ▶ ∀ 𝑥 ¬ 𝜑 ) |
14 | pm2.21 | ⊢ ( ¬ 𝜑 → ( 𝜑 → 𝜓 ) ) | |
15 | 14 | alimi | ⊢ ( ∀ 𝑥 ¬ 𝜑 → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) |
16 | 13 15 | e2 | ⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) , ¬ 𝜑 ▶ ∀ 𝑥 ( 𝜑 → 𝜓 ) ) |
17 | 16 | in2 | ⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) ▶ ( ¬ 𝜑 → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) |
18 | simpr | ⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) → ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) | |
19 | 5 18 | e1a | ⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) ▶ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) |
20 | sp | ⊢ ( ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) → ( 𝜓 → ∀ 𝑥 𝜓 ) ) | |
21 | 19 20 | e1a | ⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) ▶ ( 𝜓 → ∀ 𝑥 𝜓 ) ) |
22 | ax-1 | ⊢ ( 𝜓 → ( 𝜑 → 𝜓 ) ) | |
23 | 22 | alimi | ⊢ ( ∀ 𝑥 𝜓 → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) |
24 | imim1 | ⊢ ( ( 𝜓 → ∀ 𝑥 𝜓 ) → ( ( ∀ 𝑥 𝜓 → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) → ( 𝜓 → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) ) | |
25 | 21 23 24 | e10 | ⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) ▶ ( 𝜓 → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) |
26 | jao | ⊢ ( ( ¬ 𝜑 → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) → ( ( 𝜓 → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) → ( ( ¬ 𝜑 ∨ 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) ) | |
27 | 17 25 26 | e11 | ⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) ▶ ( ( ¬ 𝜑 ∨ 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) |
28 | imor | ⊢ ( ( 𝜑 → 𝜓 ) ↔ ( ¬ 𝜑 ∨ 𝜓 ) ) | |
29 | imbi1 | ⊢ ( ( ( 𝜑 → 𝜓 ) ↔ ( ¬ 𝜑 ∨ 𝜓 ) ) → ( ( ( 𝜑 → 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ↔ ( ( ¬ 𝜑 ∨ 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) ) | |
30 | 29 | biimprcd | ⊢ ( ( ( ¬ 𝜑 ∨ 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) → ( ( ( 𝜑 → 𝜓 ) ↔ ( ¬ 𝜑 ∨ 𝜓 ) ) → ( ( 𝜑 → 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) ) |
31 | 27 28 30 | e10 | ⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) ▶ ( ( 𝜑 → 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) |
32 | 3 31 | gen11nv | ⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) ▶ ∀ 𝑥 ( ( 𝜑 → 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) |
33 | 32 | in1 | ⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) → ∀ 𝑥 ( ( 𝜑 → 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) |