Step |
Hyp |
Ref |
Expression |
1 |
|
hbntg |
⊢ ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜒 ) → ( ¬ 𝜒 → ∀ 𝑥 ¬ 𝜑 ) ) |
2 |
|
pm2.21 |
⊢ ( ¬ 𝜑 → ( 𝜑 → 𝜃 ) ) |
3 |
2
|
alimi |
⊢ ( ∀ 𝑥 ¬ 𝜑 → ∀ 𝑥 ( 𝜑 → 𝜃 ) ) |
4 |
1 3
|
syl6 |
⊢ ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜒 ) → ( ¬ 𝜒 → ∀ 𝑥 ( 𝜑 → 𝜃 ) ) ) |
5 |
4
|
adantr |
⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜒 ) ∧ ( 𝜓 → ∀ 𝑥 𝜃 ) ) → ( ¬ 𝜒 → ∀ 𝑥 ( 𝜑 → 𝜃 ) ) ) |
6 |
|
ala1 |
⊢ ( ∀ 𝑥 𝜃 → ∀ 𝑥 ( 𝜑 → 𝜃 ) ) |
7 |
6
|
imim2i |
⊢ ( ( 𝜓 → ∀ 𝑥 𝜃 ) → ( 𝜓 → ∀ 𝑥 ( 𝜑 → 𝜃 ) ) ) |
8 |
7
|
adantl |
⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜒 ) ∧ ( 𝜓 → ∀ 𝑥 𝜃 ) ) → ( 𝜓 → ∀ 𝑥 ( 𝜑 → 𝜃 ) ) ) |
9 |
5 8
|
jad |
⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜒 ) ∧ ( 𝜓 → ∀ 𝑥 𝜃 ) ) → ( ( 𝜒 → 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝜃 ) ) ) |