Metamath Proof Explorer


Theorem hbnd

Description: Deduction form of bound-variable hypothesis builder hbn . (Contributed by NM, 3-Jan-2002)

Ref Expression
Hypotheses hbnd.1 ( 𝜑 → ∀ 𝑥 𝜑 )
hbnd.2 ( 𝜑 → ( 𝜓 → ∀ 𝑥 𝜓 ) )
Assertion hbnd ( 𝜑 → ( ¬ 𝜓 → ∀ 𝑥 ¬ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 hbnd.1 ( 𝜑 → ∀ 𝑥 𝜑 )
2 hbnd.2 ( 𝜑 → ( 𝜓 → ∀ 𝑥 𝜓 ) )
3 1 2 alrimih ( 𝜑 → ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) )
4 hbnt ( ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) → ( ¬ 𝜓 → ∀ 𝑥 ¬ 𝜓 ) )
5 3 4 syl ( 𝜑 → ( ¬ 𝜓 → ∀ 𝑥 ¬ 𝜓 ) )