Metamath Proof Explorer


Theorem hbntg

Description: A more general form of hbnt . (Contributed by Scott Fenton, 13-Dec-2010)

Ref Expression
Assertion hbntg ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜓 ) → ( ¬ 𝜓 → ∀ 𝑥 ¬ 𝜑 ) )

Proof

Step Hyp Ref Expression
1 axc7 ( ¬ ∀ 𝑥 ¬ ∀ 𝑥 𝜓𝜓 )
2 1 con1i ( ¬ 𝜓 → ∀ 𝑥 ¬ ∀ 𝑥 𝜓 )
3 con3 ( ( 𝜑 → ∀ 𝑥 𝜓 ) → ( ¬ ∀ 𝑥 𝜓 → ¬ 𝜑 ) )
4 3 al2imi ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜓 ) → ( ∀ 𝑥 ¬ ∀ 𝑥 𝜓 → ∀ 𝑥 ¬ 𝜑 ) )
5 2 4 syl5 ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜓 ) → ( ¬ 𝜓 → ∀ 𝑥 ¬ 𝜑 ) )