Description: A more general form of hbnt . (Contributed by Scott Fenton, 13-Dec-2010)
Ref | Expression | ||
---|---|---|---|
Assertion | hbntg | ⊢ ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜓 ) → ( ¬ 𝜓 → ∀ 𝑥 ¬ 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axc7 | ⊢ ( ¬ ∀ 𝑥 ¬ ∀ 𝑥 𝜓 → 𝜓 ) | |
2 | 1 | con1i | ⊢ ( ¬ 𝜓 → ∀ 𝑥 ¬ ∀ 𝑥 𝜓 ) |
3 | con3 | ⊢ ( ( 𝜑 → ∀ 𝑥 𝜓 ) → ( ¬ ∀ 𝑥 𝜓 → ¬ 𝜑 ) ) | |
4 | 3 | al2imi | ⊢ ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜓 ) → ( ∀ 𝑥 ¬ ∀ 𝑥 𝜓 → ∀ 𝑥 ¬ 𝜑 ) ) |
5 | 2 4 | syl5 | ⊢ ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜓 ) → ( ¬ 𝜓 → ∀ 𝑥 ¬ 𝜑 ) ) |