Metamath Proof Explorer


Theorem hbral

Description: Bound-variable hypothesis builder for restricted quantification. (Contributed by NM, 1-Sep-1999) (Revised by David Abernethy, 13-Dec-2009)

Ref Expression
Hypotheses hbral.1 ( 𝑦𝐴 → ∀ 𝑥 𝑦𝐴 )
hbral.2 ( 𝜑 → ∀ 𝑥 𝜑 )
Assertion hbral ( ∀ 𝑦𝐴 𝜑 → ∀ 𝑥𝑦𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 hbral.1 ( 𝑦𝐴 → ∀ 𝑥 𝑦𝐴 )
2 hbral.2 ( 𝜑 → ∀ 𝑥 𝜑 )
3 df-ral ( ∀ 𝑦𝐴 𝜑 ↔ ∀ 𝑦 ( 𝑦𝐴𝜑 ) )
4 1 2 hbim ( ( 𝑦𝐴𝜑 ) → ∀ 𝑥 ( 𝑦𝐴𝜑 ) )
5 4 hbal ( ∀ 𝑦 ( 𝑦𝐴𝜑 ) → ∀ 𝑥𝑦 ( 𝑦𝐴𝜑 ) )
6 3 5 hbxfrbi ( ∀ 𝑦𝐴 𝜑 → ∀ 𝑥𝑦𝐴 𝜑 )