| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hbsbw.1 |
⊢ ( 𝜑 → ∀ 𝑧 𝜑 ) |
| 2 |
|
df-sb |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑤 ( 𝑤 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑤 → 𝜑 ) ) ) |
| 3 |
1
|
imim2i |
⊢ ( ( 𝑥 = 𝑤 → 𝜑 ) → ( 𝑥 = 𝑤 → ∀ 𝑧 𝜑 ) ) |
| 4 |
3
|
alimi |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑤 → 𝜑 ) → ∀ 𝑥 ( 𝑥 = 𝑤 → ∀ 𝑧 𝜑 ) ) |
| 5 |
|
19.21v |
⊢ ( ∀ 𝑧 ( 𝑥 = 𝑤 → 𝜑 ) ↔ ( 𝑥 = 𝑤 → ∀ 𝑧 𝜑 ) ) |
| 6 |
5
|
biimpri |
⊢ ( ( 𝑥 = 𝑤 → ∀ 𝑧 𝜑 ) → ∀ 𝑧 ( 𝑥 = 𝑤 → 𝜑 ) ) |
| 7 |
6
|
alimi |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑤 → ∀ 𝑧 𝜑 ) → ∀ 𝑥 ∀ 𝑧 ( 𝑥 = 𝑤 → 𝜑 ) ) |
| 8 |
|
ax-11 |
⊢ ( ∀ 𝑥 ∀ 𝑧 ( 𝑥 = 𝑤 → 𝜑 ) → ∀ 𝑧 ∀ 𝑥 ( 𝑥 = 𝑤 → 𝜑 ) ) |
| 9 |
4 7 8
|
3syl |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑤 → 𝜑 ) → ∀ 𝑧 ∀ 𝑥 ( 𝑥 = 𝑤 → 𝜑 ) ) |
| 10 |
9
|
imim2i |
⊢ ( ( 𝑤 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑤 → 𝜑 ) ) → ( 𝑤 = 𝑦 → ∀ 𝑧 ∀ 𝑥 ( 𝑥 = 𝑤 → 𝜑 ) ) ) |
| 11 |
|
19.21v |
⊢ ( ∀ 𝑧 ( 𝑤 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑤 → 𝜑 ) ) ↔ ( 𝑤 = 𝑦 → ∀ 𝑧 ∀ 𝑥 ( 𝑥 = 𝑤 → 𝜑 ) ) ) |
| 12 |
10 11
|
sylibr |
⊢ ( ( 𝑤 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑤 → 𝜑 ) ) → ∀ 𝑧 ( 𝑤 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑤 → 𝜑 ) ) ) |
| 13 |
12
|
hbal |
⊢ ( ∀ 𝑤 ( 𝑤 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑤 → 𝜑 ) ) → ∀ 𝑧 ∀ 𝑤 ( 𝑤 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑤 → 𝜑 ) ) ) |
| 14 |
2 13
|
hbxfrbi |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 → ∀ 𝑧 [ 𝑦 / 𝑥 ] 𝜑 ) |