Step |
Hyp |
Ref |
Expression |
1 |
|
hbtlem.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
hbtlem.u |
⊢ 𝑈 = ( LIdeal ‘ 𝑃 ) |
3 |
|
hbtlem.s |
⊢ 𝑆 = ( ldgIdlSeq ‘ 𝑅 ) |
4 |
|
hbtlem2.t |
⊢ 𝑇 = ( LIdeal ‘ 𝑅 ) |
5 |
|
eqid |
⊢ ( deg1 ‘ 𝑅 ) = ( deg1 ‘ 𝑅 ) |
6 |
1 2 3 5
|
hbtlem1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝐼 ) ‘ 𝑋 ) = { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
8 |
7 2
|
lidlss |
⊢ ( 𝐼 ∈ 𝑈 → 𝐼 ⊆ ( Base ‘ 𝑃 ) ) |
9 |
8
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) → 𝐼 ⊆ ( Base ‘ 𝑃 ) ) |
10 |
9
|
sselda |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐼 ) → 𝑏 ∈ ( Base ‘ 𝑃 ) ) |
11 |
|
eqid |
⊢ ( coe1 ‘ 𝑏 ) = ( coe1 ‘ 𝑏 ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
13 |
11 7 1 12
|
coe1f |
⊢ ( 𝑏 ∈ ( Base ‘ 𝑃 ) → ( coe1 ‘ 𝑏 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
14 |
10 13
|
syl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐼 ) → ( coe1 ‘ 𝑏 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
15 |
|
simpl3 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐼 ) → 𝑋 ∈ ℕ0 ) |
16 |
14 15
|
ffvelrnd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐼 ) → ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) |
17 |
|
eleq1a |
⊢ ( ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) → ( 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) → 𝑎 ∈ ( Base ‘ 𝑅 ) ) ) |
18 |
16 17
|
syl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐼 ) → ( 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) → 𝑎 ∈ ( Base ‘ 𝑅 ) ) ) |
19 |
18
|
adantld |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ 𝑏 ∈ 𝐼 ) → ( ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) → 𝑎 ∈ ( Base ‘ 𝑅 ) ) ) |
20 |
19
|
rexlimdva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) → ( ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) → 𝑎 ∈ ( Base ‘ 𝑅 ) ) ) |
21 |
20
|
abssdv |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) → { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ⊆ ( Base ‘ 𝑅 ) ) |
22 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
23 |
22
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) → 𝑃 ∈ Ring ) |
24 |
|
simp2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) → 𝐼 ∈ 𝑈 ) |
25 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
26 |
2 25
|
lidl0cl |
⊢ ( ( 𝑃 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( 0g ‘ 𝑃 ) ∈ 𝐼 ) |
27 |
23 24 26
|
syl2anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) → ( 0g ‘ 𝑃 ) ∈ 𝐼 ) |
28 |
5 1 25
|
deg1z |
⊢ ( 𝑅 ∈ Ring → ( ( deg1 ‘ 𝑅 ) ‘ ( 0g ‘ 𝑃 ) ) = -∞ ) |
29 |
28
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) → ( ( deg1 ‘ 𝑅 ) ‘ ( 0g ‘ 𝑃 ) ) = -∞ ) |
30 |
|
nn0ssre |
⊢ ℕ0 ⊆ ℝ |
31 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
32 |
30 31
|
sstri |
⊢ ℕ0 ⊆ ℝ* |
33 |
|
simp3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) → 𝑋 ∈ ℕ0 ) |
34 |
32 33
|
sselid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) → 𝑋 ∈ ℝ* ) |
35 |
|
mnfle |
⊢ ( 𝑋 ∈ ℝ* → -∞ ≤ 𝑋 ) |
36 |
34 35
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) → -∞ ≤ 𝑋 ) |
37 |
29 36
|
eqbrtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) → ( ( deg1 ‘ 𝑅 ) ‘ ( 0g ‘ 𝑃 ) ) ≤ 𝑋 ) |
38 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
39 |
1 25 38
|
coe1z |
⊢ ( 𝑅 ∈ Ring → ( coe1 ‘ ( 0g ‘ 𝑃 ) ) = ( ℕ0 × { ( 0g ‘ 𝑅 ) } ) ) |
40 |
39
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) → ( coe1 ‘ ( 0g ‘ 𝑃 ) ) = ( ℕ0 × { ( 0g ‘ 𝑅 ) } ) ) |
41 |
40
|
fveq1d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) → ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝑋 ) = ( ( ℕ0 × { ( 0g ‘ 𝑅 ) } ) ‘ 𝑋 ) ) |
42 |
|
fvex |
⊢ ( 0g ‘ 𝑅 ) ∈ V |
43 |
42
|
fvconst2 |
⊢ ( 𝑋 ∈ ℕ0 → ( ( ℕ0 × { ( 0g ‘ 𝑅 ) } ) ‘ 𝑋 ) = ( 0g ‘ 𝑅 ) ) |
44 |
43
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) → ( ( ℕ0 × { ( 0g ‘ 𝑅 ) } ) ‘ 𝑋 ) = ( 0g ‘ 𝑅 ) ) |
45 |
41 44
|
eqtr2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) → ( 0g ‘ 𝑅 ) = ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝑋 ) ) |
46 |
|
fveq2 |
⊢ ( 𝑏 = ( 0g ‘ 𝑃 ) → ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) = ( ( deg1 ‘ 𝑅 ) ‘ ( 0g ‘ 𝑃 ) ) ) |
47 |
46
|
breq1d |
⊢ ( 𝑏 = ( 0g ‘ 𝑃 ) → ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ↔ ( ( deg1 ‘ 𝑅 ) ‘ ( 0g ‘ 𝑃 ) ) ≤ 𝑋 ) ) |
48 |
|
fveq2 |
⊢ ( 𝑏 = ( 0g ‘ 𝑃 ) → ( coe1 ‘ 𝑏 ) = ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ) |
49 |
48
|
fveq1d |
⊢ ( 𝑏 = ( 0g ‘ 𝑃 ) → ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) = ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝑋 ) ) |
50 |
49
|
eqeq2d |
⊢ ( 𝑏 = ( 0g ‘ 𝑃 ) → ( ( 0g ‘ 𝑅 ) = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ↔ ( 0g ‘ 𝑅 ) = ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝑋 ) ) ) |
51 |
47 50
|
anbi12d |
⊢ ( 𝑏 = ( 0g ‘ 𝑃 ) → ( ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ ( 0g ‘ 𝑅 ) = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) ↔ ( ( ( deg1 ‘ 𝑅 ) ‘ ( 0g ‘ 𝑃 ) ) ≤ 𝑋 ∧ ( 0g ‘ 𝑅 ) = ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝑋 ) ) ) ) |
52 |
51
|
rspcev |
⊢ ( ( ( 0g ‘ 𝑃 ) ∈ 𝐼 ∧ ( ( ( deg1 ‘ 𝑅 ) ‘ ( 0g ‘ 𝑃 ) ) ≤ 𝑋 ∧ ( 0g ‘ 𝑅 ) = ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝑋 ) ) ) → ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ ( 0g ‘ 𝑅 ) = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) ) |
53 |
27 37 45 52
|
syl12anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) → ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ ( 0g ‘ 𝑅 ) = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) ) |
54 |
|
eqeq1 |
⊢ ( 𝑎 = ( 0g ‘ 𝑅 ) → ( 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ↔ ( 0g ‘ 𝑅 ) = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) ) |
55 |
54
|
anbi2d |
⊢ ( 𝑎 = ( 0g ‘ 𝑅 ) → ( ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) ↔ ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ ( 0g ‘ 𝑅 ) = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) ) ) |
56 |
55
|
rexbidv |
⊢ ( 𝑎 = ( 0g ‘ 𝑅 ) → ( ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) ↔ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ ( 0g ‘ 𝑅 ) = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) ) ) |
57 |
42 56
|
elab |
⊢ ( ( 0g ‘ 𝑅 ) ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ↔ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ ( 0g ‘ 𝑅 ) = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) ) |
58 |
53 57
|
sylibr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) → ( 0g ‘ 𝑅 ) ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ) |
59 |
58
|
ne0d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) → { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ≠ ∅ ) |
60 |
23
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑓 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) ∧ ( 𝑔 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) ) ) ) → 𝑃 ∈ Ring ) |
61 |
|
simpl2 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑓 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) ∧ ( 𝑔 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) ) ) ) → 𝐼 ∈ 𝑈 ) |
62 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
63 |
1 62 12 7
|
ply1sclf |
⊢ ( 𝑅 ∈ Ring → ( algSc ‘ 𝑃 ) : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑃 ) ) |
64 |
63
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) → ( algSc ‘ 𝑃 ) : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑃 ) ) |
65 |
64
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑓 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) ∧ ( 𝑔 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) ) ) ) → ( algSc ‘ 𝑃 ) : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑃 ) ) |
66 |
|
simprl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑓 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) ∧ ( 𝑔 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) ) ) ) → 𝑐 ∈ ( Base ‘ 𝑅 ) ) |
67 |
65 66
|
ffvelrnd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑓 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) ∧ ( 𝑔 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) ) ) ) → ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ∈ ( Base ‘ 𝑃 ) ) |
68 |
|
simprll |
⊢ ( ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑓 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) ∧ ( 𝑔 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) ) ) → 𝑓 ∈ 𝐼 ) |
69 |
68
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑓 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) ∧ ( 𝑔 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) ) ) ) → 𝑓 ∈ 𝐼 ) |
70 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
71 |
2 7 70
|
lidlmcl |
⊢ ( ( ( 𝑃 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ∈ ( Base ‘ 𝑃 ) ∧ 𝑓 ∈ 𝐼 ) ) → ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ( .r ‘ 𝑃 ) 𝑓 ) ∈ 𝐼 ) |
72 |
60 61 67 69 71
|
syl22anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑓 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) ∧ ( 𝑔 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) ) ) ) → ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ( .r ‘ 𝑃 ) 𝑓 ) ∈ 𝐼 ) |
73 |
|
simprrl |
⊢ ( ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑓 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) ∧ ( 𝑔 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) ) ) → 𝑔 ∈ 𝐼 ) |
74 |
73
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑓 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) ∧ ( 𝑔 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) ) ) ) → 𝑔 ∈ 𝐼 ) |
75 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
76 |
2 75
|
lidlacl |
⊢ ( ( ( 𝑃 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ ( ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ( .r ‘ 𝑃 ) 𝑓 ) ∈ 𝐼 ∧ 𝑔 ∈ 𝐼 ) ) → ( ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ( .r ‘ 𝑃 ) 𝑓 ) ( +g ‘ 𝑃 ) 𝑔 ) ∈ 𝐼 ) |
77 |
60 61 72 74 76
|
syl22anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑓 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) ∧ ( 𝑔 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) ) ) ) → ( ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ( .r ‘ 𝑃 ) 𝑓 ) ( +g ‘ 𝑃 ) 𝑔 ) ∈ 𝐼 ) |
78 |
|
simpl1 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑓 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) ∧ ( 𝑔 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) ) ) ) → 𝑅 ∈ Ring ) |
79 |
9
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑓 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) ∧ ( 𝑔 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) ) ) ) → 𝐼 ⊆ ( Base ‘ 𝑃 ) ) |
80 |
79 69
|
sseldd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑓 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) ∧ ( 𝑔 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) ) ) ) → 𝑓 ∈ ( Base ‘ 𝑃 ) ) |
81 |
7 70
|
ringcl |
⊢ ( ( 𝑃 ∈ Ring ∧ ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ∈ ( Base ‘ 𝑃 ) ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) → ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ( .r ‘ 𝑃 ) 𝑓 ) ∈ ( Base ‘ 𝑃 ) ) |
82 |
60 67 80 81
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑓 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) ∧ ( 𝑔 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) ) ) ) → ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ( .r ‘ 𝑃 ) 𝑓 ) ∈ ( Base ‘ 𝑃 ) ) |
83 |
79 74
|
sseldd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑓 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) ∧ ( 𝑔 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) ) ) ) → 𝑔 ∈ ( Base ‘ 𝑃 ) ) |
84 |
|
simpl3 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑓 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) ∧ ( 𝑔 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) ) ) ) → 𝑋 ∈ ℕ0 ) |
85 |
32 84
|
sselid |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑓 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) ∧ ( 𝑔 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) ) ) ) → 𝑋 ∈ ℝ* ) |
86 |
5 1 7
|
deg1xrcl |
⊢ ( ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ( .r ‘ 𝑃 ) 𝑓 ) ∈ ( Base ‘ 𝑃 ) → ( ( deg1 ‘ 𝑅 ) ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ( .r ‘ 𝑃 ) 𝑓 ) ) ∈ ℝ* ) |
87 |
82 86
|
syl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑓 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) ∧ ( 𝑔 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) ) ) ) → ( ( deg1 ‘ 𝑅 ) ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ( .r ‘ 𝑃 ) 𝑓 ) ) ∈ ℝ* ) |
88 |
5 1 7
|
deg1xrcl |
⊢ ( 𝑓 ∈ ( Base ‘ 𝑃 ) → ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ∈ ℝ* ) |
89 |
80 88
|
syl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑓 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) ∧ ( 𝑔 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) ) ) ) → ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ∈ ℝ* ) |
90 |
5 1 12 7 70 62
|
deg1mul3le |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) → ( ( deg1 ‘ 𝑅 ) ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ( .r ‘ 𝑃 ) 𝑓 ) ) ≤ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ) |
91 |
78 66 80 90
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑓 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) ∧ ( 𝑔 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) ) ) ) → ( ( deg1 ‘ 𝑅 ) ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ( .r ‘ 𝑃 ) 𝑓 ) ) ≤ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ) |
92 |
|
simprlr |
⊢ ( ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑓 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) ∧ ( 𝑔 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) ) ) → ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) |
93 |
92
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑓 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) ∧ ( 𝑔 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) ) ) ) → ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) |
94 |
87 89 85 91 93
|
xrletrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑓 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) ∧ ( 𝑔 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) ) ) ) → ( ( deg1 ‘ 𝑅 ) ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ( .r ‘ 𝑃 ) 𝑓 ) ) ≤ 𝑋 ) |
95 |
|
simprrr |
⊢ ( ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑓 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) ∧ ( 𝑔 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) ) ) → ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) |
96 |
95
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑓 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) ∧ ( 𝑔 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) ) ) ) → ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) |
97 |
1 5 78 7 75 82 83 85 94 96
|
deg1addle2 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑓 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) ∧ ( 𝑔 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) ) ) ) → ( ( deg1 ‘ 𝑅 ) ‘ ( ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ( .r ‘ 𝑃 ) 𝑓 ) ( +g ‘ 𝑃 ) 𝑔 ) ) ≤ 𝑋 ) |
98 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
99 |
1 7 75 98
|
coe1addfv |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ( .r ‘ 𝑃 ) 𝑓 ) ∈ ( Base ‘ 𝑃 ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑋 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ( .r ‘ 𝑃 ) 𝑓 ) ( +g ‘ 𝑃 ) 𝑔 ) ) ‘ 𝑋 ) = ( ( ( coe1 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ( .r ‘ 𝑃 ) 𝑓 ) ) ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) ) ) |
100 |
78 82 83 84 99
|
syl31anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑓 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) ∧ ( 𝑔 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) ) ) ) → ( ( coe1 ‘ ( ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ( .r ‘ 𝑃 ) 𝑓 ) ( +g ‘ 𝑃 ) 𝑔 ) ) ‘ 𝑋 ) = ( ( ( coe1 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ( .r ‘ 𝑃 ) 𝑓 ) ) ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) ) ) |
101 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
102 |
1 7 12 62 70 101
|
coe1sclmulfv |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑋 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ( .r ‘ 𝑃 ) 𝑓 ) ) ‘ 𝑋 ) = ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ) |
103 |
78 66 80 84 102
|
syl121anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑓 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) ∧ ( 𝑔 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) ) ) ) → ( ( coe1 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ( .r ‘ 𝑃 ) 𝑓 ) ) ‘ 𝑋 ) = ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ) |
104 |
103
|
oveq1d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑓 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) ∧ ( 𝑔 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) ) ) ) → ( ( ( coe1 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ( .r ‘ 𝑃 ) 𝑓 ) ) ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) ) = ( ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) ) ) |
105 |
100 104
|
eqtr2d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑓 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) ∧ ( 𝑔 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) ) ) ) → ( ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) ) = ( ( coe1 ‘ ( ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ( .r ‘ 𝑃 ) 𝑓 ) ( +g ‘ 𝑃 ) 𝑔 ) ) ‘ 𝑋 ) ) |
106 |
|
fveq2 |
⊢ ( 𝑏 = ( ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ( .r ‘ 𝑃 ) 𝑓 ) ( +g ‘ 𝑃 ) 𝑔 ) → ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) = ( ( deg1 ‘ 𝑅 ) ‘ ( ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ( .r ‘ 𝑃 ) 𝑓 ) ( +g ‘ 𝑃 ) 𝑔 ) ) ) |
107 |
106
|
breq1d |
⊢ ( 𝑏 = ( ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ( .r ‘ 𝑃 ) 𝑓 ) ( +g ‘ 𝑃 ) 𝑔 ) → ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ↔ ( ( deg1 ‘ 𝑅 ) ‘ ( ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ( .r ‘ 𝑃 ) 𝑓 ) ( +g ‘ 𝑃 ) 𝑔 ) ) ≤ 𝑋 ) ) |
108 |
|
fveq2 |
⊢ ( 𝑏 = ( ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ( .r ‘ 𝑃 ) 𝑓 ) ( +g ‘ 𝑃 ) 𝑔 ) → ( coe1 ‘ 𝑏 ) = ( coe1 ‘ ( ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ( .r ‘ 𝑃 ) 𝑓 ) ( +g ‘ 𝑃 ) 𝑔 ) ) ) |
109 |
108
|
fveq1d |
⊢ ( 𝑏 = ( ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ( .r ‘ 𝑃 ) 𝑓 ) ( +g ‘ 𝑃 ) 𝑔 ) → ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) = ( ( coe1 ‘ ( ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ( .r ‘ 𝑃 ) 𝑓 ) ( +g ‘ 𝑃 ) 𝑔 ) ) ‘ 𝑋 ) ) |
110 |
109
|
eqeq2d |
⊢ ( 𝑏 = ( ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ( .r ‘ 𝑃 ) 𝑓 ) ( +g ‘ 𝑃 ) 𝑔 ) → ( ( ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) ) = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ↔ ( ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) ) = ( ( coe1 ‘ ( ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ( .r ‘ 𝑃 ) 𝑓 ) ( +g ‘ 𝑃 ) 𝑔 ) ) ‘ 𝑋 ) ) ) |
111 |
107 110
|
anbi12d |
⊢ ( 𝑏 = ( ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ( .r ‘ 𝑃 ) 𝑓 ) ( +g ‘ 𝑃 ) 𝑔 ) → ( ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ ( ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) ) = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) ↔ ( ( ( deg1 ‘ 𝑅 ) ‘ ( ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ( .r ‘ 𝑃 ) 𝑓 ) ( +g ‘ 𝑃 ) 𝑔 ) ) ≤ 𝑋 ∧ ( ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) ) = ( ( coe1 ‘ ( ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ( .r ‘ 𝑃 ) 𝑓 ) ( +g ‘ 𝑃 ) 𝑔 ) ) ‘ 𝑋 ) ) ) ) |
112 |
111
|
rspcev |
⊢ ( ( ( ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ( .r ‘ 𝑃 ) 𝑓 ) ( +g ‘ 𝑃 ) 𝑔 ) ∈ 𝐼 ∧ ( ( ( deg1 ‘ 𝑅 ) ‘ ( ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ( .r ‘ 𝑃 ) 𝑓 ) ( +g ‘ 𝑃 ) 𝑔 ) ) ≤ 𝑋 ∧ ( ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) ) = ( ( coe1 ‘ ( ( ( ( algSc ‘ 𝑃 ) ‘ 𝑐 ) ( .r ‘ 𝑃 ) 𝑓 ) ( +g ‘ 𝑃 ) 𝑔 ) ) ‘ 𝑋 ) ) ) → ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ ( ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) ) = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) ) |
113 |
77 97 105 112
|
syl12anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑓 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) ∧ ( 𝑔 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) ) ) ) → ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ ( ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) ) = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) ) |
114 |
|
ovex |
⊢ ( ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) ) ∈ V |
115 |
|
eqeq1 |
⊢ ( 𝑎 = ( ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) ) → ( 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ↔ ( ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) ) = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) ) |
116 |
115
|
anbi2d |
⊢ ( 𝑎 = ( ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) ) → ( ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) ↔ ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ ( ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) ) = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) ) ) |
117 |
116
|
rexbidv |
⊢ ( 𝑎 = ( ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) ) → ( ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) ↔ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ ( ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) ) = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) ) ) |
118 |
114 117
|
elab |
⊢ ( ( ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) ) ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ↔ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ ( ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) ) = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) ) |
119 |
113 118
|
sylibr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ ( 𝑐 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑓 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) ∧ ( 𝑔 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) ) ) ) → ( ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) ) ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ) |
120 |
119
|
exp45 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) → ( 𝑐 ∈ ( Base ‘ 𝑅 ) → ( ( 𝑓 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) → ( ( 𝑔 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) → ( ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) ) ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ) ) ) ) |
121 |
120
|
imp |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑓 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) → ( ( 𝑔 ∈ 𝐼 ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) → ( ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) ) ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ) ) ) |
122 |
121
|
exp5c |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑓 ∈ 𝐼 → ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 → ( 𝑔 ∈ 𝐼 → ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 → ( ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) ) ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ) ) ) ) ) |
123 |
122
|
imp |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑓 ∈ 𝐼 ) → ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 → ( 𝑔 ∈ 𝐼 → ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 → ( ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) ) ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ) ) ) ) |
124 |
123
|
imp41 |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑓 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) ∧ 𝑔 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) → ( ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) ) ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ) |
125 |
|
oveq2 |
⊢ ( 𝑒 = ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) → ( ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ( +g ‘ 𝑅 ) 𝑒 ) = ( ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) ) ) |
126 |
125
|
eleq1d |
⊢ ( 𝑒 = ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) → ( ( ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ( +g ‘ 𝑅 ) 𝑒 ) ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ↔ ( ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) ) ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ) ) |
127 |
124 126
|
syl5ibrcom |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑓 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) ∧ 𝑔 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) → ( 𝑒 = ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) → ( ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ( +g ‘ 𝑅 ) 𝑒 ) ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ) ) |
128 |
127
|
expimpd |
⊢ ( ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑓 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) ∧ 𝑔 ∈ 𝐼 ) → ( ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ∧ 𝑒 = ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) ) → ( ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ( +g ‘ 𝑅 ) 𝑒 ) ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ) ) |
129 |
128
|
rexlimdva |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑓 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) → ( ∃ 𝑔 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ∧ 𝑒 = ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) ) → ( ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ( +g ‘ 𝑅 ) 𝑒 ) ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ) ) |
130 |
129
|
alrimiv |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑓 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) → ∀ 𝑒 ( ∃ 𝑔 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ∧ 𝑒 = ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) ) → ( ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ( +g ‘ 𝑅 ) 𝑒 ) ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ) ) |
131 |
|
eqeq1 |
⊢ ( 𝑎 = 𝑒 → ( 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ↔ 𝑒 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) ) |
132 |
131
|
anbi2d |
⊢ ( 𝑎 = 𝑒 → ( ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) ↔ ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑒 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) ) ) |
133 |
132
|
rexbidv |
⊢ ( 𝑎 = 𝑒 → ( ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) ↔ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑒 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) ) ) |
134 |
|
fveq2 |
⊢ ( 𝑏 = 𝑔 → ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) = ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ) |
135 |
134
|
breq1d |
⊢ ( 𝑏 = 𝑔 → ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ↔ ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ) ) |
136 |
|
fveq2 |
⊢ ( 𝑏 = 𝑔 → ( coe1 ‘ 𝑏 ) = ( coe1 ‘ 𝑔 ) ) |
137 |
136
|
fveq1d |
⊢ ( 𝑏 = 𝑔 → ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) = ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) ) |
138 |
137
|
eqeq2d |
⊢ ( 𝑏 = 𝑔 → ( 𝑒 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ↔ 𝑒 = ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) ) ) |
139 |
135 138
|
anbi12d |
⊢ ( 𝑏 = 𝑔 → ( ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑒 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) ↔ ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ∧ 𝑒 = ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) ) ) ) |
140 |
139
|
cbvrexvw |
⊢ ( ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑒 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) ↔ ∃ 𝑔 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ∧ 𝑒 = ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) ) ) |
141 |
133 140
|
bitrdi |
⊢ ( 𝑎 = 𝑒 → ( ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) ↔ ∃ 𝑔 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ∧ 𝑒 = ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) ) ) ) |
142 |
141
|
ralab |
⊢ ( ∀ 𝑒 ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ( ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ( +g ‘ 𝑅 ) 𝑒 ) ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ↔ ∀ 𝑒 ( ∃ 𝑔 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) ≤ 𝑋 ∧ 𝑒 = ( ( coe1 ‘ 𝑔 ) ‘ 𝑋 ) ) → ( ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ( +g ‘ 𝑅 ) 𝑒 ) ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ) ) |
143 |
130 142
|
sylibr |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑓 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) → ∀ 𝑒 ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ( ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ( +g ‘ 𝑅 ) 𝑒 ) ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ) |
144 |
|
oveq2 |
⊢ ( 𝑑 = ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) → ( 𝑐 ( .r ‘ 𝑅 ) 𝑑 ) = ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ) |
145 |
144
|
oveq1d |
⊢ ( 𝑑 = ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) → ( ( 𝑐 ( .r ‘ 𝑅 ) 𝑑 ) ( +g ‘ 𝑅 ) 𝑒 ) = ( ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ( +g ‘ 𝑅 ) 𝑒 ) ) |
146 |
145
|
eleq1d |
⊢ ( 𝑑 = ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) → ( ( ( 𝑐 ( .r ‘ 𝑅 ) 𝑑 ) ( +g ‘ 𝑅 ) 𝑒 ) ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ↔ ( ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ( +g ‘ 𝑅 ) 𝑒 ) ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ) ) |
147 |
146
|
ralbidv |
⊢ ( 𝑑 = ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) → ( ∀ 𝑒 ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ( ( 𝑐 ( .r ‘ 𝑅 ) 𝑑 ) ( +g ‘ 𝑅 ) 𝑒 ) ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ↔ ∀ 𝑒 ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ( ( 𝑐 ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ( +g ‘ 𝑅 ) 𝑒 ) ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ) ) |
148 |
143 147
|
syl5ibrcom |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑓 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) → ( 𝑑 = ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) → ∀ 𝑒 ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ( ( 𝑐 ( .r ‘ 𝑅 ) 𝑑 ) ( +g ‘ 𝑅 ) 𝑒 ) ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ) ) |
149 |
148
|
expimpd |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑓 ∈ 𝐼 ) → ( ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ∧ 𝑑 = ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) → ∀ 𝑒 ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ( ( 𝑐 ( .r ‘ 𝑅 ) 𝑑 ) ( +g ‘ 𝑅 ) 𝑒 ) ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ) ) |
150 |
149
|
rexlimdva |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) → ( ∃ 𝑓 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ∧ 𝑑 = ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) → ∀ 𝑒 ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ( ( 𝑐 ( .r ‘ 𝑅 ) 𝑑 ) ( +g ‘ 𝑅 ) 𝑒 ) ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ) ) |
151 |
150
|
alrimiv |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) → ∀ 𝑑 ( ∃ 𝑓 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ∧ 𝑑 = ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) → ∀ 𝑒 ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ( ( 𝑐 ( .r ‘ 𝑅 ) 𝑑 ) ( +g ‘ 𝑅 ) 𝑒 ) ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ) ) |
152 |
|
eqeq1 |
⊢ ( 𝑎 = 𝑑 → ( 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ↔ 𝑑 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) ) |
153 |
152
|
anbi2d |
⊢ ( 𝑎 = 𝑑 → ( ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) ↔ ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑑 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) ) ) |
154 |
153
|
rexbidv |
⊢ ( 𝑎 = 𝑑 → ( ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) ↔ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑑 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) ) ) |
155 |
|
fveq2 |
⊢ ( 𝑏 = 𝑓 → ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) = ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ) |
156 |
155
|
breq1d |
⊢ ( 𝑏 = 𝑓 → ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ↔ ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ) ) |
157 |
|
fveq2 |
⊢ ( 𝑏 = 𝑓 → ( coe1 ‘ 𝑏 ) = ( coe1 ‘ 𝑓 ) ) |
158 |
157
|
fveq1d |
⊢ ( 𝑏 = 𝑓 → ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) = ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) |
159 |
158
|
eqeq2d |
⊢ ( 𝑏 = 𝑓 → ( 𝑑 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ↔ 𝑑 = ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ) |
160 |
156 159
|
anbi12d |
⊢ ( 𝑏 = 𝑓 → ( ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑑 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) ↔ ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ∧ 𝑑 = ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ) ) |
161 |
160
|
cbvrexvw |
⊢ ( ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑑 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) ↔ ∃ 𝑓 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ∧ 𝑑 = ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ) |
162 |
154 161
|
bitrdi |
⊢ ( 𝑎 = 𝑑 → ( ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) ↔ ∃ 𝑓 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ∧ 𝑑 = ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) ) ) |
163 |
162
|
ralab |
⊢ ( ∀ 𝑑 ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ∀ 𝑒 ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ( ( 𝑐 ( .r ‘ 𝑅 ) 𝑑 ) ( +g ‘ 𝑅 ) 𝑒 ) ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ↔ ∀ 𝑑 ( ∃ 𝑓 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑓 ) ≤ 𝑋 ∧ 𝑑 = ( ( coe1 ‘ 𝑓 ) ‘ 𝑋 ) ) → ∀ 𝑒 ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ( ( 𝑐 ( .r ‘ 𝑅 ) 𝑑 ) ( +g ‘ 𝑅 ) 𝑒 ) ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ) ) |
164 |
151 163
|
sylibr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) → ∀ 𝑑 ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ∀ 𝑒 ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ( ( 𝑐 ( .r ‘ 𝑅 ) 𝑑 ) ( +g ‘ 𝑅 ) 𝑒 ) ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ) |
165 |
164
|
ralrimiva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) → ∀ 𝑐 ∈ ( Base ‘ 𝑅 ) ∀ 𝑑 ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ∀ 𝑒 ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ( ( 𝑐 ( .r ‘ 𝑅 ) 𝑑 ) ( +g ‘ 𝑅 ) 𝑒 ) ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ) |
166 |
4 12 98 101
|
islidl |
⊢ ( { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ∈ 𝑇 ↔ ( { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ⊆ ( Base ‘ 𝑅 ) ∧ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ≠ ∅ ∧ ∀ 𝑐 ∈ ( Base ‘ 𝑅 ) ∀ 𝑑 ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ∀ 𝑒 ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ( ( 𝑐 ( .r ‘ 𝑅 ) 𝑑 ) ( +g ‘ 𝑅 ) 𝑒 ) ∈ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ) ) |
167 |
21 59 165 166
|
syl3anbrc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) → { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑋 ) ) } ∈ 𝑇 ) |
168 |
6 167
|
eqeltrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝐼 ) ‘ 𝑋 ) ∈ 𝑇 ) |