Metamath Proof Explorer


Theorem hbtlem3

Description: The leading ideal function is monotone. (Contributed by Stefan O'Rear, 31-Mar-2015)

Ref Expression
Hypotheses hbtlem.p 𝑃 = ( Poly1𝑅 )
hbtlem.u 𝑈 = ( LIdeal ‘ 𝑃 )
hbtlem.s 𝑆 = ( ldgIdlSeq ‘ 𝑅 )
hbtlem3.r ( 𝜑𝑅 ∈ Ring )
hbtlem3.i ( 𝜑𝐼𝑈 )
hbtlem3.j ( 𝜑𝐽𝑈 )
hbtlem3.ij ( 𝜑𝐼𝐽 )
hbtlem3.x ( 𝜑𝑋 ∈ ℕ0 )
Assertion hbtlem3 ( 𝜑 → ( ( 𝑆𝐼 ) ‘ 𝑋 ) ⊆ ( ( 𝑆𝐽 ) ‘ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 hbtlem.p 𝑃 = ( Poly1𝑅 )
2 hbtlem.u 𝑈 = ( LIdeal ‘ 𝑃 )
3 hbtlem.s 𝑆 = ( ldgIdlSeq ‘ 𝑅 )
4 hbtlem3.r ( 𝜑𝑅 ∈ Ring )
5 hbtlem3.i ( 𝜑𝐼𝑈 )
6 hbtlem3.j ( 𝜑𝐽𝑈 )
7 hbtlem3.ij ( 𝜑𝐼𝐽 )
8 hbtlem3.x ( 𝜑𝑋 ∈ ℕ0 )
9 ssrexv ( 𝐼𝐽 → ( ∃ 𝑏𝐼 ( ( ( deg1𝑅 ) ‘ 𝑏 ) ≤ 𝑋𝑎 = ( ( coe1𝑏 ) ‘ 𝑋 ) ) → ∃ 𝑏𝐽 ( ( ( deg1𝑅 ) ‘ 𝑏 ) ≤ 𝑋𝑎 = ( ( coe1𝑏 ) ‘ 𝑋 ) ) ) )
10 7 9 syl ( 𝜑 → ( ∃ 𝑏𝐼 ( ( ( deg1𝑅 ) ‘ 𝑏 ) ≤ 𝑋𝑎 = ( ( coe1𝑏 ) ‘ 𝑋 ) ) → ∃ 𝑏𝐽 ( ( ( deg1𝑅 ) ‘ 𝑏 ) ≤ 𝑋𝑎 = ( ( coe1𝑏 ) ‘ 𝑋 ) ) ) )
11 10 ss2abdv ( 𝜑 → { 𝑎 ∣ ∃ 𝑏𝐼 ( ( ( deg1𝑅 ) ‘ 𝑏 ) ≤ 𝑋𝑎 = ( ( coe1𝑏 ) ‘ 𝑋 ) ) } ⊆ { 𝑎 ∣ ∃ 𝑏𝐽 ( ( ( deg1𝑅 ) ‘ 𝑏 ) ≤ 𝑋𝑎 = ( ( coe1𝑏 ) ‘ 𝑋 ) ) } )
12 eqid ( deg1𝑅 ) = ( deg1𝑅 )
13 1 2 3 12 hbtlem1 ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0 ) → ( ( 𝑆𝐼 ) ‘ 𝑋 ) = { 𝑎 ∣ ∃ 𝑏𝐼 ( ( ( deg1𝑅 ) ‘ 𝑏 ) ≤ 𝑋𝑎 = ( ( coe1𝑏 ) ‘ 𝑋 ) ) } )
14 4 5 8 13 syl3anc ( 𝜑 → ( ( 𝑆𝐼 ) ‘ 𝑋 ) = { 𝑎 ∣ ∃ 𝑏𝐼 ( ( ( deg1𝑅 ) ‘ 𝑏 ) ≤ 𝑋𝑎 = ( ( coe1𝑏 ) ‘ 𝑋 ) ) } )
15 1 2 3 12 hbtlem1 ( ( 𝑅 ∈ Ring ∧ 𝐽𝑈𝑋 ∈ ℕ0 ) → ( ( 𝑆𝐽 ) ‘ 𝑋 ) = { 𝑎 ∣ ∃ 𝑏𝐽 ( ( ( deg1𝑅 ) ‘ 𝑏 ) ≤ 𝑋𝑎 = ( ( coe1𝑏 ) ‘ 𝑋 ) ) } )
16 4 6 8 15 syl3anc ( 𝜑 → ( ( 𝑆𝐽 ) ‘ 𝑋 ) = { 𝑎 ∣ ∃ 𝑏𝐽 ( ( ( deg1𝑅 ) ‘ 𝑏 ) ≤ 𝑋𝑎 = ( ( coe1𝑏 ) ‘ 𝑋 ) ) } )
17 11 14 16 3sstr4d ( 𝜑 → ( ( 𝑆𝐼 ) ‘ 𝑋 ) ⊆ ( ( 𝑆𝐽 ) ‘ 𝑋 ) )