Metamath Proof Explorer


Theorem hbtlem4

Description: The leading ideal function goes to increasing sequences. (Contributed by Stefan O'Rear, 1-Apr-2015)

Ref Expression
Hypotheses hbtlem.p 𝑃 = ( Poly1𝑅 )
hbtlem.u 𝑈 = ( LIdeal ‘ 𝑃 )
hbtlem.s 𝑆 = ( ldgIdlSeq ‘ 𝑅 )
hbtlem4.r ( 𝜑𝑅 ∈ Ring )
hbtlem4.i ( 𝜑𝐼𝑈 )
hbtlem4.x ( 𝜑𝑋 ∈ ℕ0 )
hbtlem4.y ( 𝜑𝑌 ∈ ℕ0 )
hbtlem4.xy ( 𝜑𝑋𝑌 )
Assertion hbtlem4 ( 𝜑 → ( ( 𝑆𝐼 ) ‘ 𝑋 ) ⊆ ( ( 𝑆𝐼 ) ‘ 𝑌 ) )

Proof

Step Hyp Ref Expression
1 hbtlem.p 𝑃 = ( Poly1𝑅 )
2 hbtlem.u 𝑈 = ( LIdeal ‘ 𝑃 )
3 hbtlem.s 𝑆 = ( ldgIdlSeq ‘ 𝑅 )
4 hbtlem4.r ( 𝜑𝑅 ∈ Ring )
5 hbtlem4.i ( 𝜑𝐼𝑈 )
6 hbtlem4.x ( 𝜑𝑋 ∈ ℕ0 )
7 hbtlem4.y ( 𝜑𝑌 ∈ ℕ0 )
8 hbtlem4.xy ( 𝜑𝑋𝑌 )
9 4 ad2antrr ( ( ( 𝜑𝑐𝐼 ) ∧ ( ( deg1𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → 𝑅 ∈ Ring )
10 1 ply1ring ( 𝑅 ∈ Ring → 𝑃 ∈ Ring )
11 9 10 syl ( ( ( 𝜑𝑐𝐼 ) ∧ ( ( deg1𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → 𝑃 ∈ Ring )
12 5 ad2antrr ( ( ( 𝜑𝑐𝐼 ) ∧ ( ( deg1𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → 𝐼𝑈 )
13 eqid ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 )
14 13 ringmgp ( 𝑃 ∈ Ring → ( mulGrp ‘ 𝑃 ) ∈ Mnd )
15 11 14 syl ( ( ( 𝜑𝑐𝐼 ) ∧ ( ( deg1𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( mulGrp ‘ 𝑃 ) ∈ Mnd )
16 6 ad2antrr ( ( ( 𝜑𝑐𝐼 ) ∧ ( ( deg1𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → 𝑋 ∈ ℕ0 )
17 7 ad2antrr ( ( ( 𝜑𝑐𝐼 ) ∧ ( ( deg1𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → 𝑌 ∈ ℕ0 )
18 8 ad2antrr ( ( ( 𝜑𝑐𝐼 ) ∧ ( ( deg1𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → 𝑋𝑌 )
19 nn0sub2 ( ( 𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑋𝑌 ) → ( 𝑌𝑋 ) ∈ ℕ0 )
20 16 17 18 19 syl3anc ( ( ( 𝜑𝑐𝐼 ) ∧ ( ( deg1𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( 𝑌𝑋 ) ∈ ℕ0 )
21 eqid ( var1𝑅 ) = ( var1𝑅 )
22 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
23 21 1 22 vr1cl ( 𝑅 ∈ Ring → ( var1𝑅 ) ∈ ( Base ‘ 𝑃 ) )
24 9 23 syl ( ( ( 𝜑𝑐𝐼 ) ∧ ( ( deg1𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( var1𝑅 ) ∈ ( Base ‘ 𝑃 ) )
25 13 22 mgpbas ( Base ‘ 𝑃 ) = ( Base ‘ ( mulGrp ‘ 𝑃 ) )
26 eqid ( .g ‘ ( mulGrp ‘ 𝑃 ) ) = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
27 25 26 mulgnn0cl ( ( ( mulGrp ‘ 𝑃 ) ∈ Mnd ∧ ( 𝑌𝑋 ) ∈ ℕ0 ∧ ( var1𝑅 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝑌𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1𝑅 ) ) ∈ ( Base ‘ 𝑃 ) )
28 15 20 24 27 syl3anc ( ( ( 𝜑𝑐𝐼 ) ∧ ( ( deg1𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( ( 𝑌𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1𝑅 ) ) ∈ ( Base ‘ 𝑃 ) )
29 simplr ( ( ( 𝜑𝑐𝐼 ) ∧ ( ( deg1𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → 𝑐𝐼 )
30 eqid ( .r𝑃 ) = ( .r𝑃 )
31 2 22 30 lidlmcl ( ( ( 𝑃 ∈ Ring ∧ 𝐼𝑈 ) ∧ ( ( ( 𝑌𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1𝑅 ) ) ∈ ( Base ‘ 𝑃 ) ∧ 𝑐𝐼 ) ) → ( ( ( 𝑌𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1𝑅 ) ) ( .r𝑃 ) 𝑐 ) ∈ 𝐼 )
32 11 12 28 29 31 syl22anc ( ( ( 𝜑𝑐𝐼 ) ∧ ( ( deg1𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( ( ( 𝑌𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1𝑅 ) ) ( .r𝑃 ) 𝑐 ) ∈ 𝐼 )
33 eqid ( deg1𝑅 ) = ( deg1𝑅 )
34 22 2 lidlss ( 𝐼𝑈𝐼 ⊆ ( Base ‘ 𝑃 ) )
35 12 34 syl ( ( ( 𝜑𝑐𝐼 ) ∧ ( ( deg1𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → 𝐼 ⊆ ( Base ‘ 𝑃 ) )
36 35 29 sseldd ( ( ( 𝜑𝑐𝐼 ) ∧ ( ( deg1𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → 𝑐 ∈ ( Base ‘ 𝑃 ) )
37 33 1 21 13 26 deg1pwle ( ( 𝑅 ∈ Ring ∧ ( 𝑌𝑋 ) ∈ ℕ0 ) → ( ( deg1𝑅 ) ‘ ( ( 𝑌𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1𝑅 ) ) ) ≤ ( 𝑌𝑋 ) )
38 9 20 37 syl2anc ( ( ( 𝜑𝑐𝐼 ) ∧ ( ( deg1𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( ( deg1𝑅 ) ‘ ( ( 𝑌𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1𝑅 ) ) ) ≤ ( 𝑌𝑋 ) )
39 simpr ( ( ( 𝜑𝑐𝐼 ) ∧ ( ( deg1𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( ( deg1𝑅 ) ‘ 𝑐 ) ≤ 𝑋 )
40 1 33 9 22 30 28 36 20 16 38 39 deg1mulle2 ( ( ( 𝜑𝑐𝐼 ) ∧ ( ( deg1𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( ( deg1𝑅 ) ‘ ( ( ( 𝑌𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1𝑅 ) ) ( .r𝑃 ) 𝑐 ) ) ≤ ( ( 𝑌𝑋 ) + 𝑋 ) )
41 17 nn0cnd ( ( ( 𝜑𝑐𝐼 ) ∧ ( ( deg1𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → 𝑌 ∈ ℂ )
42 16 nn0cnd ( ( ( 𝜑𝑐𝐼 ) ∧ ( ( deg1𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → 𝑋 ∈ ℂ )
43 41 42 npcand ( ( ( 𝜑𝑐𝐼 ) ∧ ( ( deg1𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( ( 𝑌𝑋 ) + 𝑋 ) = 𝑌 )
44 40 43 breqtrd ( ( ( 𝜑𝑐𝐼 ) ∧ ( ( deg1𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( ( deg1𝑅 ) ‘ ( ( ( 𝑌𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1𝑅 ) ) ( .r𝑃 ) 𝑐 ) ) ≤ 𝑌 )
45 eqid ( 0g𝑅 ) = ( 0g𝑅 )
46 45 1 21 13 26 22 30 9 36 20 16 coe1pwmulfv ( ( ( 𝜑𝑐𝐼 ) ∧ ( ( deg1𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( ( coe1 ‘ ( ( ( 𝑌𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1𝑅 ) ) ( .r𝑃 ) 𝑐 ) ) ‘ ( ( 𝑌𝑋 ) + 𝑋 ) ) = ( ( coe1𝑐 ) ‘ 𝑋 ) )
47 43 fveq2d ( ( ( 𝜑𝑐𝐼 ) ∧ ( ( deg1𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( ( coe1 ‘ ( ( ( 𝑌𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1𝑅 ) ) ( .r𝑃 ) 𝑐 ) ) ‘ ( ( 𝑌𝑋 ) + 𝑋 ) ) = ( ( coe1 ‘ ( ( ( 𝑌𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1𝑅 ) ) ( .r𝑃 ) 𝑐 ) ) ‘ 𝑌 ) )
48 46 47 eqtr3d ( ( ( 𝜑𝑐𝐼 ) ∧ ( ( deg1𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( ( coe1𝑐 ) ‘ 𝑋 ) = ( ( coe1 ‘ ( ( ( 𝑌𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1𝑅 ) ) ( .r𝑃 ) 𝑐 ) ) ‘ 𝑌 ) )
49 fveq2 ( 𝑏 = ( ( ( 𝑌𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1𝑅 ) ) ( .r𝑃 ) 𝑐 ) → ( ( deg1𝑅 ) ‘ 𝑏 ) = ( ( deg1𝑅 ) ‘ ( ( ( 𝑌𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1𝑅 ) ) ( .r𝑃 ) 𝑐 ) ) )
50 49 breq1d ( 𝑏 = ( ( ( 𝑌𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1𝑅 ) ) ( .r𝑃 ) 𝑐 ) → ( ( ( deg1𝑅 ) ‘ 𝑏 ) ≤ 𝑌 ↔ ( ( deg1𝑅 ) ‘ ( ( ( 𝑌𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1𝑅 ) ) ( .r𝑃 ) 𝑐 ) ) ≤ 𝑌 ) )
51 fveq2 ( 𝑏 = ( ( ( 𝑌𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1𝑅 ) ) ( .r𝑃 ) 𝑐 ) → ( coe1𝑏 ) = ( coe1 ‘ ( ( ( 𝑌𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1𝑅 ) ) ( .r𝑃 ) 𝑐 ) ) )
52 51 fveq1d ( 𝑏 = ( ( ( 𝑌𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1𝑅 ) ) ( .r𝑃 ) 𝑐 ) → ( ( coe1𝑏 ) ‘ 𝑌 ) = ( ( coe1 ‘ ( ( ( 𝑌𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1𝑅 ) ) ( .r𝑃 ) 𝑐 ) ) ‘ 𝑌 ) )
53 52 eqeq2d ( 𝑏 = ( ( ( 𝑌𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1𝑅 ) ) ( .r𝑃 ) 𝑐 ) → ( ( ( coe1𝑐 ) ‘ 𝑋 ) = ( ( coe1𝑏 ) ‘ 𝑌 ) ↔ ( ( coe1𝑐 ) ‘ 𝑋 ) = ( ( coe1 ‘ ( ( ( 𝑌𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1𝑅 ) ) ( .r𝑃 ) 𝑐 ) ) ‘ 𝑌 ) ) )
54 50 53 anbi12d ( 𝑏 = ( ( ( 𝑌𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1𝑅 ) ) ( .r𝑃 ) 𝑐 ) → ( ( ( ( deg1𝑅 ) ‘ 𝑏 ) ≤ 𝑌 ∧ ( ( coe1𝑐 ) ‘ 𝑋 ) = ( ( coe1𝑏 ) ‘ 𝑌 ) ) ↔ ( ( ( deg1𝑅 ) ‘ ( ( ( 𝑌𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1𝑅 ) ) ( .r𝑃 ) 𝑐 ) ) ≤ 𝑌 ∧ ( ( coe1𝑐 ) ‘ 𝑋 ) = ( ( coe1 ‘ ( ( ( 𝑌𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1𝑅 ) ) ( .r𝑃 ) 𝑐 ) ) ‘ 𝑌 ) ) ) )
55 54 rspcev ( ( ( ( ( 𝑌𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1𝑅 ) ) ( .r𝑃 ) 𝑐 ) ∈ 𝐼 ∧ ( ( ( deg1𝑅 ) ‘ ( ( ( 𝑌𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1𝑅 ) ) ( .r𝑃 ) 𝑐 ) ) ≤ 𝑌 ∧ ( ( coe1𝑐 ) ‘ 𝑋 ) = ( ( coe1 ‘ ( ( ( 𝑌𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1𝑅 ) ) ( .r𝑃 ) 𝑐 ) ) ‘ 𝑌 ) ) ) → ∃ 𝑏𝐼 ( ( ( deg1𝑅 ) ‘ 𝑏 ) ≤ 𝑌 ∧ ( ( coe1𝑐 ) ‘ 𝑋 ) = ( ( coe1𝑏 ) ‘ 𝑌 ) ) )
56 32 44 48 55 syl12anc ( ( ( 𝜑𝑐𝐼 ) ∧ ( ( deg1𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ∃ 𝑏𝐼 ( ( ( deg1𝑅 ) ‘ 𝑏 ) ≤ 𝑌 ∧ ( ( coe1𝑐 ) ‘ 𝑋 ) = ( ( coe1𝑏 ) ‘ 𝑌 ) ) )
57 eqeq1 ( 𝑎 = ( ( coe1𝑐 ) ‘ 𝑋 ) → ( 𝑎 = ( ( coe1𝑏 ) ‘ 𝑌 ) ↔ ( ( coe1𝑐 ) ‘ 𝑋 ) = ( ( coe1𝑏 ) ‘ 𝑌 ) ) )
58 57 anbi2d ( 𝑎 = ( ( coe1𝑐 ) ‘ 𝑋 ) → ( ( ( ( deg1𝑅 ) ‘ 𝑏 ) ≤ 𝑌𝑎 = ( ( coe1𝑏 ) ‘ 𝑌 ) ) ↔ ( ( ( deg1𝑅 ) ‘ 𝑏 ) ≤ 𝑌 ∧ ( ( coe1𝑐 ) ‘ 𝑋 ) = ( ( coe1𝑏 ) ‘ 𝑌 ) ) ) )
59 58 rexbidv ( 𝑎 = ( ( coe1𝑐 ) ‘ 𝑋 ) → ( ∃ 𝑏𝐼 ( ( ( deg1𝑅 ) ‘ 𝑏 ) ≤ 𝑌𝑎 = ( ( coe1𝑏 ) ‘ 𝑌 ) ) ↔ ∃ 𝑏𝐼 ( ( ( deg1𝑅 ) ‘ 𝑏 ) ≤ 𝑌 ∧ ( ( coe1𝑐 ) ‘ 𝑋 ) = ( ( coe1𝑏 ) ‘ 𝑌 ) ) ) )
60 56 59 syl5ibrcom ( ( ( 𝜑𝑐𝐼 ) ∧ ( ( deg1𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( 𝑎 = ( ( coe1𝑐 ) ‘ 𝑋 ) → ∃ 𝑏𝐼 ( ( ( deg1𝑅 ) ‘ 𝑏 ) ≤ 𝑌𝑎 = ( ( coe1𝑏 ) ‘ 𝑌 ) ) ) )
61 60 expimpd ( ( 𝜑𝑐𝐼 ) → ( ( ( ( deg1𝑅 ) ‘ 𝑐 ) ≤ 𝑋𝑎 = ( ( coe1𝑐 ) ‘ 𝑋 ) ) → ∃ 𝑏𝐼 ( ( ( deg1𝑅 ) ‘ 𝑏 ) ≤ 𝑌𝑎 = ( ( coe1𝑏 ) ‘ 𝑌 ) ) ) )
62 61 rexlimdva ( 𝜑 → ( ∃ 𝑐𝐼 ( ( ( deg1𝑅 ) ‘ 𝑐 ) ≤ 𝑋𝑎 = ( ( coe1𝑐 ) ‘ 𝑋 ) ) → ∃ 𝑏𝐼 ( ( ( deg1𝑅 ) ‘ 𝑏 ) ≤ 𝑌𝑎 = ( ( coe1𝑏 ) ‘ 𝑌 ) ) ) )
63 62 ss2abdv ( 𝜑 → { 𝑎 ∣ ∃ 𝑐𝐼 ( ( ( deg1𝑅 ) ‘ 𝑐 ) ≤ 𝑋𝑎 = ( ( coe1𝑐 ) ‘ 𝑋 ) ) } ⊆ { 𝑎 ∣ ∃ 𝑏𝐼 ( ( ( deg1𝑅 ) ‘ 𝑏 ) ≤ 𝑌𝑎 = ( ( coe1𝑏 ) ‘ 𝑌 ) ) } )
64 1 2 3 33 hbtlem1 ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0 ) → ( ( 𝑆𝐼 ) ‘ 𝑋 ) = { 𝑎 ∣ ∃ 𝑐𝐼 ( ( ( deg1𝑅 ) ‘ 𝑐 ) ≤ 𝑋𝑎 = ( ( coe1𝑐 ) ‘ 𝑋 ) ) } )
65 4 5 6 64 syl3anc ( 𝜑 → ( ( 𝑆𝐼 ) ‘ 𝑋 ) = { 𝑎 ∣ ∃ 𝑐𝐼 ( ( ( deg1𝑅 ) ‘ 𝑐 ) ≤ 𝑋𝑎 = ( ( coe1𝑐 ) ‘ 𝑋 ) ) } )
66 1 2 3 33 hbtlem1 ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈𝑌 ∈ ℕ0 ) → ( ( 𝑆𝐼 ) ‘ 𝑌 ) = { 𝑎 ∣ ∃ 𝑏𝐼 ( ( ( deg1𝑅 ) ‘ 𝑏 ) ≤ 𝑌𝑎 = ( ( coe1𝑏 ) ‘ 𝑌 ) ) } )
67 4 5 7 66 syl3anc ( 𝜑 → ( ( 𝑆𝐼 ) ‘ 𝑌 ) = { 𝑎 ∣ ∃ 𝑏𝐼 ( ( ( deg1𝑅 ) ‘ 𝑏 ) ≤ 𝑌𝑎 = ( ( coe1𝑏 ) ‘ 𝑌 ) ) } )
68 63 65 67 3sstr4d ( 𝜑 → ( ( 𝑆𝐼 ) ‘ 𝑋 ) ⊆ ( ( 𝑆𝐼 ) ‘ 𝑌 ) )