Step |
Hyp |
Ref |
Expression |
1 |
|
hbtlem.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
hbtlem.u |
⊢ 𝑈 = ( LIdeal ‘ 𝑃 ) |
3 |
|
hbtlem.s |
⊢ 𝑆 = ( ldgIdlSeq ‘ 𝑅 ) |
4 |
|
hbtlem4.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
5 |
|
hbtlem4.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑈 ) |
6 |
|
hbtlem4.x |
⊢ ( 𝜑 → 𝑋 ∈ ℕ0 ) |
7 |
|
hbtlem4.y |
⊢ ( 𝜑 → 𝑌 ∈ ℕ0 ) |
8 |
|
hbtlem4.xy |
⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) |
9 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → 𝑅 ∈ Ring ) |
10 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
11 |
9 10
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → 𝑃 ∈ Ring ) |
12 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → 𝐼 ∈ 𝑈 ) |
13 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
14 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
15 |
13 14
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( mulGrp ‘ 𝑃 ) ) |
16 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) ) = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
17 |
13
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
18 |
11 17
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
19 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → 𝑋 ∈ ℕ0 ) |
20 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → 𝑌 ∈ ℕ0 ) |
21 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → 𝑋 ≤ 𝑌 ) |
22 |
|
nn0sub2 |
⊢ ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑋 ≤ 𝑌 ) → ( 𝑌 − 𝑋 ) ∈ ℕ0 ) |
23 |
19 20 21 22
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( 𝑌 − 𝑋 ) ∈ ℕ0 ) |
24 |
|
eqid |
⊢ ( var1 ‘ 𝑅 ) = ( var1 ‘ 𝑅 ) |
25 |
24 1 14
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → ( var1 ‘ 𝑅 ) ∈ ( Base ‘ 𝑃 ) ) |
26 |
9 25
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( var1 ‘ 𝑅 ) ∈ ( Base ‘ 𝑃 ) ) |
27 |
15 16 18 23 26
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) ) |
28 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → 𝑐 ∈ 𝐼 ) |
29 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
30 |
2 14 29
|
lidlmcl |
⊢ ( ( ( 𝑃 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) ∧ 𝑐 ∈ 𝐼 ) ) → ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) ∈ 𝐼 ) |
31 |
11 12 27 28 30
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) ∈ 𝐼 ) |
32 |
|
eqid |
⊢ ( deg1 ‘ 𝑅 ) = ( deg1 ‘ 𝑅 ) |
33 |
14 2
|
lidlss |
⊢ ( 𝐼 ∈ 𝑈 → 𝐼 ⊆ ( Base ‘ 𝑃 ) ) |
34 |
12 33
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → 𝐼 ⊆ ( Base ‘ 𝑃 ) ) |
35 |
34 28
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → 𝑐 ∈ ( Base ‘ 𝑃 ) ) |
36 |
32 1 24 13 16
|
deg1pwle |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑌 − 𝑋 ) ∈ ℕ0 ) → ( ( deg1 ‘ 𝑅 ) ‘ ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ≤ ( 𝑌 − 𝑋 ) ) |
37 |
9 23 36
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( ( deg1 ‘ 𝑅 ) ‘ ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ≤ ( 𝑌 − 𝑋 ) ) |
38 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) |
39 |
1 32 9 14 29 27 35 23 19 37 38
|
deg1mulle2 |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( ( deg1 ‘ 𝑅 ) ‘ ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) ) ≤ ( ( 𝑌 − 𝑋 ) + 𝑋 ) ) |
40 |
20
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → 𝑌 ∈ ℂ ) |
41 |
19
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → 𝑋 ∈ ℂ ) |
42 |
40 41
|
npcand |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( ( 𝑌 − 𝑋 ) + 𝑋 ) = 𝑌 ) |
43 |
39 42
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( ( deg1 ‘ 𝑅 ) ‘ ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) ) ≤ 𝑌 ) |
44 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
45 |
44 1 24 13 16 14 29 9 35 23 19
|
coe1pwmulfv |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( ( coe1 ‘ ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) ) ‘ ( ( 𝑌 − 𝑋 ) + 𝑋 ) ) = ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) ) |
46 |
42
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( ( coe1 ‘ ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) ) ‘ ( ( 𝑌 − 𝑋 ) + 𝑋 ) ) = ( ( coe1 ‘ ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) ) ‘ 𝑌 ) ) |
47 |
45 46
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) = ( ( coe1 ‘ ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) ) ‘ 𝑌 ) ) |
48 |
|
fveq2 |
⊢ ( 𝑏 = ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) → ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) = ( ( deg1 ‘ 𝑅 ) ‘ ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) ) ) |
49 |
48
|
breq1d |
⊢ ( 𝑏 = ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) → ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑌 ↔ ( ( deg1 ‘ 𝑅 ) ‘ ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) ) ≤ 𝑌 ) ) |
50 |
|
fveq2 |
⊢ ( 𝑏 = ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) → ( coe1 ‘ 𝑏 ) = ( coe1 ‘ ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) ) ) |
51 |
50
|
fveq1d |
⊢ ( 𝑏 = ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) → ( ( coe1 ‘ 𝑏 ) ‘ 𝑌 ) = ( ( coe1 ‘ ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) ) ‘ 𝑌 ) ) |
52 |
51
|
eqeq2d |
⊢ ( 𝑏 = ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) → ( ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) = ( ( coe1 ‘ 𝑏 ) ‘ 𝑌 ) ↔ ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) = ( ( coe1 ‘ ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) ) ‘ 𝑌 ) ) ) |
53 |
49 52
|
anbi12d |
⊢ ( 𝑏 = ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) → ( ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑌 ∧ ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) = ( ( coe1 ‘ 𝑏 ) ‘ 𝑌 ) ) ↔ ( ( ( deg1 ‘ 𝑅 ) ‘ ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) ) ≤ 𝑌 ∧ ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) = ( ( coe1 ‘ ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) ) ‘ 𝑌 ) ) ) ) |
54 |
53
|
rspcev |
⊢ ( ( ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) ∈ 𝐼 ∧ ( ( ( deg1 ‘ 𝑅 ) ‘ ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) ) ≤ 𝑌 ∧ ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) = ( ( coe1 ‘ ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) ) ‘ 𝑌 ) ) ) → ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑌 ∧ ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) = ( ( coe1 ‘ 𝑏 ) ‘ 𝑌 ) ) ) |
55 |
31 43 47 54
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑌 ∧ ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) = ( ( coe1 ‘ 𝑏 ) ‘ 𝑌 ) ) ) |
56 |
|
eqeq1 |
⊢ ( 𝑎 = ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) → ( 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑌 ) ↔ ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) = ( ( coe1 ‘ 𝑏 ) ‘ 𝑌 ) ) ) |
57 |
56
|
anbi2d |
⊢ ( 𝑎 = ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) → ( ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑌 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑌 ) ) ↔ ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑌 ∧ ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) = ( ( coe1 ‘ 𝑏 ) ‘ 𝑌 ) ) ) ) |
58 |
57
|
rexbidv |
⊢ ( 𝑎 = ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) → ( ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑌 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑌 ) ) ↔ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑌 ∧ ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) = ( ( coe1 ‘ 𝑏 ) ‘ 𝑌 ) ) ) ) |
59 |
55 58
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( 𝑎 = ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) → ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑌 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑌 ) ) ) ) |
60 |
59
|
expimpd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) ) → ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑌 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑌 ) ) ) ) |
61 |
60
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) ) → ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑌 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑌 ) ) ) ) |
62 |
61
|
ss2abdv |
⊢ ( 𝜑 → { 𝑎 ∣ ∃ 𝑐 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) ) } ⊆ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑌 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑌 ) ) } ) |
63 |
1 2 3 32
|
hbtlem1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝐼 ) ‘ 𝑋 ) = { 𝑎 ∣ ∃ 𝑐 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) ) } ) |
64 |
4 5 6 63
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐼 ) ‘ 𝑋 ) = { 𝑎 ∣ ∃ 𝑐 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) ) } ) |
65 |
1 2 3 32
|
hbtlem1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑌 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝐼 ) ‘ 𝑌 ) = { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑌 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑌 ) ) } ) |
66 |
4 5 7 65
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐼 ) ‘ 𝑌 ) = { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑌 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑌 ) ) } ) |
67 |
62 64 66
|
3sstr4d |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐼 ) ‘ 𝑋 ) ⊆ ( ( 𝑆 ‘ 𝐼 ) ‘ 𝑌 ) ) |