Step |
Hyp |
Ref |
Expression |
1 |
|
hbtlem.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
hbtlem.u |
⊢ 𝑈 = ( LIdeal ‘ 𝑃 ) |
3 |
|
hbtlem.s |
⊢ 𝑆 = ( ldgIdlSeq ‘ 𝑅 ) |
4 |
|
hbtlem4.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
5 |
|
hbtlem4.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑈 ) |
6 |
|
hbtlem4.x |
⊢ ( 𝜑 → 𝑋 ∈ ℕ0 ) |
7 |
|
hbtlem4.y |
⊢ ( 𝜑 → 𝑌 ∈ ℕ0 ) |
8 |
|
hbtlem4.xy |
⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) |
9 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → 𝑅 ∈ Ring ) |
10 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
11 |
9 10
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → 𝑃 ∈ Ring ) |
12 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → 𝐼 ∈ 𝑈 ) |
13 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
14 |
13
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
15 |
11 14
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
16 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → 𝑋 ∈ ℕ0 ) |
17 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → 𝑌 ∈ ℕ0 ) |
18 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → 𝑋 ≤ 𝑌 ) |
19 |
|
nn0sub2 |
⊢ ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑋 ≤ 𝑌 ) → ( 𝑌 − 𝑋 ) ∈ ℕ0 ) |
20 |
16 17 18 19
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( 𝑌 − 𝑋 ) ∈ ℕ0 ) |
21 |
|
eqid |
⊢ ( var1 ‘ 𝑅 ) = ( var1 ‘ 𝑅 ) |
22 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
23 |
21 1 22
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → ( var1 ‘ 𝑅 ) ∈ ( Base ‘ 𝑃 ) ) |
24 |
9 23
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( var1 ‘ 𝑅 ) ∈ ( Base ‘ 𝑃 ) ) |
25 |
13 22
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( mulGrp ‘ 𝑃 ) ) |
26 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) ) = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
27 |
25 26
|
mulgnn0cl |
⊢ ( ( ( mulGrp ‘ 𝑃 ) ∈ Mnd ∧ ( 𝑌 − 𝑋 ) ∈ ℕ0 ∧ ( var1 ‘ 𝑅 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) ) |
28 |
15 20 24 27
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) ) |
29 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → 𝑐 ∈ 𝐼 ) |
30 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
31 |
2 22 30
|
lidlmcl |
⊢ ( ( ( 𝑃 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) ∧ 𝑐 ∈ 𝐼 ) ) → ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) ∈ 𝐼 ) |
32 |
11 12 28 29 31
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) ∈ 𝐼 ) |
33 |
|
eqid |
⊢ ( deg1 ‘ 𝑅 ) = ( deg1 ‘ 𝑅 ) |
34 |
22 2
|
lidlss |
⊢ ( 𝐼 ∈ 𝑈 → 𝐼 ⊆ ( Base ‘ 𝑃 ) ) |
35 |
12 34
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → 𝐼 ⊆ ( Base ‘ 𝑃 ) ) |
36 |
35 29
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → 𝑐 ∈ ( Base ‘ 𝑃 ) ) |
37 |
33 1 21 13 26
|
deg1pwle |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑌 − 𝑋 ) ∈ ℕ0 ) → ( ( deg1 ‘ 𝑅 ) ‘ ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ≤ ( 𝑌 − 𝑋 ) ) |
38 |
9 20 37
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( ( deg1 ‘ 𝑅 ) ‘ ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ≤ ( 𝑌 − 𝑋 ) ) |
39 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) |
40 |
1 33 9 22 30 28 36 20 16 38 39
|
deg1mulle2 |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( ( deg1 ‘ 𝑅 ) ‘ ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) ) ≤ ( ( 𝑌 − 𝑋 ) + 𝑋 ) ) |
41 |
17
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → 𝑌 ∈ ℂ ) |
42 |
16
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → 𝑋 ∈ ℂ ) |
43 |
41 42
|
npcand |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( ( 𝑌 − 𝑋 ) + 𝑋 ) = 𝑌 ) |
44 |
40 43
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( ( deg1 ‘ 𝑅 ) ‘ ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) ) ≤ 𝑌 ) |
45 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
46 |
45 1 21 13 26 22 30 9 36 20 16
|
coe1pwmulfv |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( ( coe1 ‘ ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) ) ‘ ( ( 𝑌 − 𝑋 ) + 𝑋 ) ) = ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) ) |
47 |
43
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( ( coe1 ‘ ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) ) ‘ ( ( 𝑌 − 𝑋 ) + 𝑋 ) ) = ( ( coe1 ‘ ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) ) ‘ 𝑌 ) ) |
48 |
46 47
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) = ( ( coe1 ‘ ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) ) ‘ 𝑌 ) ) |
49 |
|
fveq2 |
⊢ ( 𝑏 = ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) → ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) = ( ( deg1 ‘ 𝑅 ) ‘ ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) ) ) |
50 |
49
|
breq1d |
⊢ ( 𝑏 = ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) → ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑌 ↔ ( ( deg1 ‘ 𝑅 ) ‘ ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) ) ≤ 𝑌 ) ) |
51 |
|
fveq2 |
⊢ ( 𝑏 = ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) → ( coe1 ‘ 𝑏 ) = ( coe1 ‘ ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) ) ) |
52 |
51
|
fveq1d |
⊢ ( 𝑏 = ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) → ( ( coe1 ‘ 𝑏 ) ‘ 𝑌 ) = ( ( coe1 ‘ ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) ) ‘ 𝑌 ) ) |
53 |
52
|
eqeq2d |
⊢ ( 𝑏 = ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) → ( ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) = ( ( coe1 ‘ 𝑏 ) ‘ 𝑌 ) ↔ ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) = ( ( coe1 ‘ ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) ) ‘ 𝑌 ) ) ) |
54 |
50 53
|
anbi12d |
⊢ ( 𝑏 = ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) → ( ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑌 ∧ ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) = ( ( coe1 ‘ 𝑏 ) ‘ 𝑌 ) ) ↔ ( ( ( deg1 ‘ 𝑅 ) ‘ ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) ) ≤ 𝑌 ∧ ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) = ( ( coe1 ‘ ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) ) ‘ 𝑌 ) ) ) ) |
55 |
54
|
rspcev |
⊢ ( ( ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) ∈ 𝐼 ∧ ( ( ( deg1 ‘ 𝑅 ) ‘ ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) ) ≤ 𝑌 ∧ ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) = ( ( coe1 ‘ ( ( ( 𝑌 − 𝑋 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ( .r ‘ 𝑃 ) 𝑐 ) ) ‘ 𝑌 ) ) ) → ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑌 ∧ ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) = ( ( coe1 ‘ 𝑏 ) ‘ 𝑌 ) ) ) |
56 |
32 44 48 55
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑌 ∧ ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) = ( ( coe1 ‘ 𝑏 ) ‘ 𝑌 ) ) ) |
57 |
|
eqeq1 |
⊢ ( 𝑎 = ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) → ( 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑌 ) ↔ ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) = ( ( coe1 ‘ 𝑏 ) ‘ 𝑌 ) ) ) |
58 |
57
|
anbi2d |
⊢ ( 𝑎 = ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) → ( ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑌 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑌 ) ) ↔ ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑌 ∧ ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) = ( ( coe1 ‘ 𝑏 ) ‘ 𝑌 ) ) ) ) |
59 |
58
|
rexbidv |
⊢ ( 𝑎 = ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) → ( ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑌 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑌 ) ) ↔ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑌 ∧ ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) = ( ( coe1 ‘ 𝑏 ) ‘ 𝑌 ) ) ) ) |
60 |
56 59
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ) → ( 𝑎 = ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) → ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑌 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑌 ) ) ) ) |
61 |
60
|
expimpd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) ) → ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑌 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑌 ) ) ) ) |
62 |
61
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) ) → ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑌 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑌 ) ) ) ) |
63 |
62
|
ss2abdv |
⊢ ( 𝜑 → { 𝑎 ∣ ∃ 𝑐 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) ) } ⊆ { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑌 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑌 ) ) } ) |
64 |
1 2 3 33
|
hbtlem1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝐼 ) ‘ 𝑋 ) = { 𝑎 ∣ ∃ 𝑐 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) ) } ) |
65 |
4 5 6 64
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐼 ) ‘ 𝑋 ) = { 𝑎 ∣ ∃ 𝑐 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑐 ) ≤ 𝑋 ∧ 𝑎 = ( ( coe1 ‘ 𝑐 ) ‘ 𝑋 ) ) } ) |
66 |
1 2 3 33
|
hbtlem1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑌 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝐼 ) ‘ 𝑌 ) = { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑌 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑌 ) ) } ) |
67 |
4 5 7 66
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐼 ) ‘ 𝑌 ) = { 𝑎 ∣ ∃ 𝑏 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑏 ) ≤ 𝑌 ∧ 𝑎 = ( ( coe1 ‘ 𝑏 ) ‘ 𝑌 ) ) } ) |
68 |
63 65 67
|
3sstr4d |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐼 ) ‘ 𝑋 ) ⊆ ( ( 𝑆 ‘ 𝐼 ) ‘ 𝑌 ) ) |