Metamath Proof Explorer


Theorem hbtlem5

Description: The leading ideal function is strictly monotone. (Contributed by Stefan O'Rear, 1-Apr-2015)

Ref Expression
Hypotheses hbtlem.p 𝑃 = ( Poly1𝑅 )
hbtlem.u 𝑈 = ( LIdeal ‘ 𝑃 )
hbtlem.s 𝑆 = ( ldgIdlSeq ‘ 𝑅 )
hbtlem3.r ( 𝜑𝑅 ∈ Ring )
hbtlem3.i ( 𝜑𝐼𝑈 )
hbtlem3.j ( 𝜑𝐽𝑈 )
hbtlem3.ij ( 𝜑𝐼𝐽 )
hbtlem5.e ( 𝜑 → ∀ 𝑥 ∈ ℕ0 ( ( 𝑆𝐽 ) ‘ 𝑥 ) ⊆ ( ( 𝑆𝐼 ) ‘ 𝑥 ) )
Assertion hbtlem5 ( 𝜑𝐼 = 𝐽 )

Proof

Step Hyp Ref Expression
1 hbtlem.p 𝑃 = ( Poly1𝑅 )
2 hbtlem.u 𝑈 = ( LIdeal ‘ 𝑃 )
3 hbtlem.s 𝑆 = ( ldgIdlSeq ‘ 𝑅 )
4 hbtlem3.r ( 𝜑𝑅 ∈ Ring )
5 hbtlem3.i ( 𝜑𝐼𝑈 )
6 hbtlem3.j ( 𝜑𝐽𝑈 )
7 hbtlem3.ij ( 𝜑𝐼𝐽 )
8 hbtlem5.e ( 𝜑 → ∀ 𝑥 ∈ ℕ0 ( ( 𝑆𝐽 ) ‘ 𝑥 ) ⊆ ( ( 𝑆𝐼 ) ‘ 𝑥 ) )
9 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
10 9 2 lidlss ( 𝐽𝑈𝐽 ⊆ ( Base ‘ 𝑃 ) )
11 6 10 syl ( 𝜑𝐽 ⊆ ( Base ‘ 𝑃 ) )
12 11 sselda ( ( 𝜑𝑎𝐽 ) → 𝑎 ∈ ( Base ‘ 𝑃 ) )
13 eqid ( deg1𝑅 ) = ( deg1𝑅 )
14 13 1 9 deg1cl ( 𝑎 ∈ ( Base ‘ 𝑃 ) → ( ( deg1𝑅 ) ‘ 𝑎 ) ∈ ( ℕ0 ∪ { -∞ } ) )
15 12 14 syl ( ( 𝜑𝑎𝐽 ) → ( ( deg1𝑅 ) ‘ 𝑎 ) ∈ ( ℕ0 ∪ { -∞ } ) )
16 elun ( ( ( deg1𝑅 ) ‘ 𝑎 ) ∈ ( ℕ0 ∪ { -∞ } ) ↔ ( ( ( deg1𝑅 ) ‘ 𝑎 ) ∈ ℕ0 ∨ ( ( deg1𝑅 ) ‘ 𝑎 ) ∈ { -∞ } ) )
17 nnssnn0 ℕ ⊆ ℕ0
18 nn0re ( ( ( deg1𝑅 ) ‘ 𝑎 ) ∈ ℕ0 → ( ( deg1𝑅 ) ‘ 𝑎 ) ∈ ℝ )
19 arch ( ( ( deg1𝑅 ) ‘ 𝑎 ) ∈ ℝ → ∃ 𝑏 ∈ ℕ ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏 )
20 18 19 syl ( ( ( deg1𝑅 ) ‘ 𝑎 ) ∈ ℕ0 → ∃ 𝑏 ∈ ℕ ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏 )
21 ssrexv ( ℕ ⊆ ℕ0 → ( ∃ 𝑏 ∈ ℕ ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏 → ∃ 𝑏 ∈ ℕ0 ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏 ) )
22 17 20 21 mpsyl ( ( ( deg1𝑅 ) ‘ 𝑎 ) ∈ ℕ0 → ∃ 𝑏 ∈ ℕ0 ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏 )
23 elsni ( ( ( deg1𝑅 ) ‘ 𝑎 ) ∈ { -∞ } → ( ( deg1𝑅 ) ‘ 𝑎 ) = -∞ )
24 0nn0 0 ∈ ℕ0
25 mnflt0 -∞ < 0
26 breq2 ( 𝑏 = 0 → ( -∞ < 𝑏 ↔ -∞ < 0 ) )
27 26 rspcev ( ( 0 ∈ ℕ0 ∧ -∞ < 0 ) → ∃ 𝑏 ∈ ℕ0 -∞ < 𝑏 )
28 24 25 27 mp2an 𝑏 ∈ ℕ0 -∞ < 𝑏
29 breq1 ( ( ( deg1𝑅 ) ‘ 𝑎 ) = -∞ → ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏 ↔ -∞ < 𝑏 ) )
30 29 rexbidv ( ( ( deg1𝑅 ) ‘ 𝑎 ) = -∞ → ( ∃ 𝑏 ∈ ℕ0 ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏 ↔ ∃ 𝑏 ∈ ℕ0 -∞ < 𝑏 ) )
31 28 30 mpbiri ( ( ( deg1𝑅 ) ‘ 𝑎 ) = -∞ → ∃ 𝑏 ∈ ℕ0 ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏 )
32 23 31 syl ( ( ( deg1𝑅 ) ‘ 𝑎 ) ∈ { -∞ } → ∃ 𝑏 ∈ ℕ0 ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏 )
33 22 32 jaoi ( ( ( ( deg1𝑅 ) ‘ 𝑎 ) ∈ ℕ0 ∨ ( ( deg1𝑅 ) ‘ 𝑎 ) ∈ { -∞ } ) → ∃ 𝑏 ∈ ℕ0 ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏 )
34 16 33 sylbi ( ( ( deg1𝑅 ) ‘ 𝑎 ) ∈ ( ℕ0 ∪ { -∞ } ) → ∃ 𝑏 ∈ ℕ0 ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏 )
35 15 34 syl ( ( 𝜑𝑎𝐽 ) → ∃ 𝑏 ∈ ℕ0 ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏 )
36 breq2 ( 𝑐 = 0 → ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑐 ↔ ( ( deg1𝑅 ) ‘ 𝑎 ) < 0 ) )
37 36 imbi1d ( 𝑐 = 0 → ( ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑐𝑎𝐼 ) ↔ ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 0 → 𝑎𝐼 ) ) )
38 37 ralbidv ( 𝑐 = 0 → ( ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑐𝑎𝐼 ) ↔ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 0 → 𝑎𝐼 ) ) )
39 38 imbi2d ( 𝑐 = 0 → ( ( 𝜑 → ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑐𝑎𝐼 ) ) ↔ ( 𝜑 → ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 0 → 𝑎𝐼 ) ) ) )
40 breq2 ( 𝑐 = 𝑏 → ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑐 ↔ ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏 ) )
41 40 imbi1d ( 𝑐 = 𝑏 → ( ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑐𝑎𝐼 ) ↔ ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) )
42 41 ralbidv ( 𝑐 = 𝑏 → ( ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑐𝑎𝐼 ) ↔ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) )
43 42 imbi2d ( 𝑐 = 𝑏 → ( ( 𝜑 → ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑐𝑎𝐼 ) ) ↔ ( 𝜑 → ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ) )
44 breq2 ( 𝑐 = ( 𝑏 + 1 ) → ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑐 ↔ ( ( deg1𝑅 ) ‘ 𝑎 ) < ( 𝑏 + 1 ) ) )
45 44 imbi1d ( 𝑐 = ( 𝑏 + 1 ) → ( ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑐𝑎𝐼 ) ↔ ( ( ( deg1𝑅 ) ‘ 𝑎 ) < ( 𝑏 + 1 ) → 𝑎𝐼 ) ) )
46 45 ralbidv ( 𝑐 = ( 𝑏 + 1 ) → ( ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑐𝑎𝐼 ) ↔ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < ( 𝑏 + 1 ) → 𝑎𝐼 ) ) )
47 fveq2 ( 𝑎 = 𝑑 → ( ( deg1𝑅 ) ‘ 𝑎 ) = ( ( deg1𝑅 ) ‘ 𝑑 ) )
48 47 breq1d ( 𝑎 = 𝑑 → ( ( ( deg1𝑅 ) ‘ 𝑎 ) < ( 𝑏 + 1 ) ↔ ( ( deg1𝑅 ) ‘ 𝑑 ) < ( 𝑏 + 1 ) ) )
49 eleq1 ( 𝑎 = 𝑑 → ( 𝑎𝐼𝑑𝐼 ) )
50 48 49 imbi12d ( 𝑎 = 𝑑 → ( ( ( ( deg1𝑅 ) ‘ 𝑎 ) < ( 𝑏 + 1 ) → 𝑎𝐼 ) ↔ ( ( ( deg1𝑅 ) ‘ 𝑑 ) < ( 𝑏 + 1 ) → 𝑑𝐼 ) ) )
51 50 cbvralvw ( ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < ( 𝑏 + 1 ) → 𝑎𝐼 ) ↔ ∀ 𝑑𝐽 ( ( ( deg1𝑅 ) ‘ 𝑑 ) < ( 𝑏 + 1 ) → 𝑑𝐼 ) )
52 46 51 bitrdi ( 𝑐 = ( 𝑏 + 1 ) → ( ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑐𝑎𝐼 ) ↔ ∀ 𝑑𝐽 ( ( ( deg1𝑅 ) ‘ 𝑑 ) < ( 𝑏 + 1 ) → 𝑑𝐼 ) ) )
53 52 imbi2d ( 𝑐 = ( 𝑏 + 1 ) → ( ( 𝜑 → ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑐𝑎𝐼 ) ) ↔ ( 𝜑 → ∀ 𝑑𝐽 ( ( ( deg1𝑅 ) ‘ 𝑑 ) < ( 𝑏 + 1 ) → 𝑑𝐼 ) ) ) )
54 4 adantr ( ( 𝜑𝑎𝐽 ) → 𝑅 ∈ Ring )
55 eqid ( 0g𝑃 ) = ( 0g𝑃 )
56 13 1 55 9 deg1lt0 ( ( 𝑅 ∈ Ring ∧ 𝑎 ∈ ( Base ‘ 𝑃 ) ) → ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 0 ↔ 𝑎 = ( 0g𝑃 ) ) )
57 54 12 56 syl2anc ( ( 𝜑𝑎𝐽 ) → ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 0 ↔ 𝑎 = ( 0g𝑃 ) ) )
58 1 ply1ring ( 𝑅 ∈ Ring → 𝑃 ∈ Ring )
59 4 58 syl ( 𝜑𝑃 ∈ Ring )
60 2 55 lidl0cl ( ( 𝑃 ∈ Ring ∧ 𝐼𝑈 ) → ( 0g𝑃 ) ∈ 𝐼 )
61 59 5 60 syl2anc ( 𝜑 → ( 0g𝑃 ) ∈ 𝐼 )
62 eleq1a ( ( 0g𝑃 ) ∈ 𝐼 → ( 𝑎 = ( 0g𝑃 ) → 𝑎𝐼 ) )
63 61 62 syl ( 𝜑 → ( 𝑎 = ( 0g𝑃 ) → 𝑎𝐼 ) )
64 63 adantr ( ( 𝜑𝑎𝐽 ) → ( 𝑎 = ( 0g𝑃 ) → 𝑎𝐼 ) )
65 57 64 sylbid ( ( 𝜑𝑎𝐽 ) → ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 0 → 𝑎𝐼 ) )
66 65 ralrimiva ( 𝜑 → ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 0 → 𝑎𝐼 ) )
67 11 3ad2ant2 ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) → 𝐽 ⊆ ( Base ‘ 𝑃 ) )
68 67 sselda ( ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ∧ 𝑑𝐽 ) → 𝑑 ∈ ( Base ‘ 𝑃 ) )
69 13 1 9 deg1cl ( 𝑑 ∈ ( Base ‘ 𝑃 ) → ( ( deg1𝑅 ) ‘ 𝑑 ) ∈ ( ℕ0 ∪ { -∞ } ) )
70 68 69 syl ( ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ∧ 𝑑𝐽 ) → ( ( deg1𝑅 ) ‘ 𝑑 ) ∈ ( ℕ0 ∪ { -∞ } ) )
71 simpl1 ( ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ∧ 𝑑𝐽 ) → 𝑏 ∈ ℕ0 )
72 71 nn0zd ( ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ∧ 𝑑𝐽 ) → 𝑏 ∈ ℤ )
73 degltp1le ( ( ( ( deg1𝑅 ) ‘ 𝑑 ) ∈ ( ℕ0 ∪ { -∞ } ) ∧ 𝑏 ∈ ℤ ) → ( ( ( deg1𝑅 ) ‘ 𝑑 ) < ( 𝑏 + 1 ) ↔ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) )
74 70 72 73 syl2anc ( ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ∧ 𝑑𝐽 ) → ( ( ( deg1𝑅 ) ‘ 𝑑 ) < ( 𝑏 + 1 ) ↔ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) )
75 fveq2 ( 𝑥 = 𝑏 → ( ( 𝑆𝐽 ) ‘ 𝑥 ) = ( ( 𝑆𝐽 ) ‘ 𝑏 ) )
76 fveq2 ( 𝑥 = 𝑏 → ( ( 𝑆𝐼 ) ‘ 𝑥 ) = ( ( 𝑆𝐼 ) ‘ 𝑏 ) )
77 75 76 sseq12d ( 𝑥 = 𝑏 → ( ( ( 𝑆𝐽 ) ‘ 𝑥 ) ⊆ ( ( 𝑆𝐼 ) ‘ 𝑥 ) ↔ ( ( 𝑆𝐽 ) ‘ 𝑏 ) ⊆ ( ( 𝑆𝐼 ) ‘ 𝑏 ) ) )
78 77 rspcva ( ( 𝑏 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( ( 𝑆𝐽 ) ‘ 𝑥 ) ⊆ ( ( 𝑆𝐼 ) ‘ 𝑥 ) ) → ( ( 𝑆𝐽 ) ‘ 𝑏 ) ⊆ ( ( 𝑆𝐼 ) ‘ 𝑏 ) )
79 8 78 sylan2 ( ( 𝑏 ∈ ℕ0𝜑 ) → ( ( 𝑆𝐽 ) ‘ 𝑏 ) ⊆ ( ( 𝑆𝐼 ) ‘ 𝑏 ) )
80 4 adantl ( ( 𝑏 ∈ ℕ0𝜑 ) → 𝑅 ∈ Ring )
81 6 adantl ( ( 𝑏 ∈ ℕ0𝜑 ) → 𝐽𝑈 )
82 simpl ( ( 𝑏 ∈ ℕ0𝜑 ) → 𝑏 ∈ ℕ0 )
83 1 2 3 13 hbtlem1 ( ( 𝑅 ∈ Ring ∧ 𝐽𝑈𝑏 ∈ ℕ0 ) → ( ( 𝑆𝐽 ) ‘ 𝑏 ) = { 𝑐 ∣ ∃ 𝑒𝐽 ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏𝑐 = ( ( coe1𝑒 ) ‘ 𝑏 ) ) } )
84 80 81 82 83 syl3anc ( ( 𝑏 ∈ ℕ0𝜑 ) → ( ( 𝑆𝐽 ) ‘ 𝑏 ) = { 𝑐 ∣ ∃ 𝑒𝐽 ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏𝑐 = ( ( coe1𝑒 ) ‘ 𝑏 ) ) } )
85 5 adantl ( ( 𝑏 ∈ ℕ0𝜑 ) → 𝐼𝑈 )
86 1 2 3 13 hbtlem1 ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈𝑏 ∈ ℕ0 ) → ( ( 𝑆𝐼 ) ‘ 𝑏 ) = { 𝑐 ∣ ∃ 𝑒𝐼 ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏𝑐 = ( ( coe1𝑒 ) ‘ 𝑏 ) ) } )
87 80 85 82 86 syl3anc ( ( 𝑏 ∈ ℕ0𝜑 ) → ( ( 𝑆𝐼 ) ‘ 𝑏 ) = { 𝑐 ∣ ∃ 𝑒𝐼 ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏𝑐 = ( ( coe1𝑒 ) ‘ 𝑏 ) ) } )
88 79 84 87 3sstr3d ( ( 𝑏 ∈ ℕ0𝜑 ) → { 𝑐 ∣ ∃ 𝑒𝐽 ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏𝑐 = ( ( coe1𝑒 ) ‘ 𝑏 ) ) } ⊆ { 𝑐 ∣ ∃ 𝑒𝐼 ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏𝑐 = ( ( coe1𝑒 ) ‘ 𝑏 ) ) } )
89 88 3adant3 ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) → { 𝑐 ∣ ∃ 𝑒𝐽 ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏𝑐 = ( ( coe1𝑒 ) ‘ 𝑏 ) ) } ⊆ { 𝑐 ∣ ∃ 𝑒𝐼 ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏𝑐 = ( ( coe1𝑒 ) ‘ 𝑏 ) ) } )
90 89 adantr ( ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ∧ ( 𝑑𝐽 ∧ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) ) → { 𝑐 ∣ ∃ 𝑒𝐽 ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏𝑐 = ( ( coe1𝑒 ) ‘ 𝑏 ) ) } ⊆ { 𝑐 ∣ ∃ 𝑒𝐼 ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏𝑐 = ( ( coe1𝑒 ) ‘ 𝑏 ) ) } )
91 simpl ( ( 𝑑𝐽 ∧ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) → 𝑑𝐽 )
92 simpr ( ( 𝑑𝐽 ∧ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) → ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 )
93 eqidd ( ( 𝑑𝐽 ∧ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) → ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑑 ) ‘ 𝑏 ) )
94 fveq2 ( 𝑒 = 𝑑 → ( ( deg1𝑅 ) ‘ 𝑒 ) = ( ( deg1𝑅 ) ‘ 𝑑 ) )
95 94 breq1d ( 𝑒 = 𝑑 → ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏 ↔ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) )
96 fveq2 ( 𝑒 = 𝑑 → ( coe1𝑒 ) = ( coe1𝑑 ) )
97 96 fveq1d ( 𝑒 = 𝑑 → ( ( coe1𝑒 ) ‘ 𝑏 ) = ( ( coe1𝑑 ) ‘ 𝑏 ) )
98 97 eqeq2d ( 𝑒 = 𝑑 → ( ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑒 ) ‘ 𝑏 ) ↔ ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑑 ) ‘ 𝑏 ) ) )
99 95 98 anbi12d ( 𝑒 = 𝑑 → ( ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏 ∧ ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑒 ) ‘ 𝑏 ) ) ↔ ( ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ∧ ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑑 ) ‘ 𝑏 ) ) ) )
100 99 rspcev ( ( 𝑑𝐽 ∧ ( ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ∧ ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑑 ) ‘ 𝑏 ) ) ) → ∃ 𝑒𝐽 ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏 ∧ ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑒 ) ‘ 𝑏 ) ) )
101 91 92 93 100 syl12anc ( ( 𝑑𝐽 ∧ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) → ∃ 𝑒𝐽 ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏 ∧ ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑒 ) ‘ 𝑏 ) ) )
102 fvex ( ( coe1𝑑 ) ‘ 𝑏 ) ∈ V
103 eqeq1 ( 𝑐 = ( ( coe1𝑑 ) ‘ 𝑏 ) → ( 𝑐 = ( ( coe1𝑒 ) ‘ 𝑏 ) ↔ ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑒 ) ‘ 𝑏 ) ) )
104 103 anbi2d ( 𝑐 = ( ( coe1𝑑 ) ‘ 𝑏 ) → ( ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏𝑐 = ( ( coe1𝑒 ) ‘ 𝑏 ) ) ↔ ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏 ∧ ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑒 ) ‘ 𝑏 ) ) ) )
105 104 rexbidv ( 𝑐 = ( ( coe1𝑑 ) ‘ 𝑏 ) → ( ∃ 𝑒𝐽 ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏𝑐 = ( ( coe1𝑒 ) ‘ 𝑏 ) ) ↔ ∃ 𝑒𝐽 ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏 ∧ ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑒 ) ‘ 𝑏 ) ) ) )
106 102 105 elab ( ( ( coe1𝑑 ) ‘ 𝑏 ) ∈ { 𝑐 ∣ ∃ 𝑒𝐽 ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏𝑐 = ( ( coe1𝑒 ) ‘ 𝑏 ) ) } ↔ ∃ 𝑒𝐽 ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏 ∧ ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑒 ) ‘ 𝑏 ) ) )
107 101 106 sylibr ( ( 𝑑𝐽 ∧ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) → ( ( coe1𝑑 ) ‘ 𝑏 ) ∈ { 𝑐 ∣ ∃ 𝑒𝐽 ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏𝑐 = ( ( coe1𝑒 ) ‘ 𝑏 ) ) } )
108 107 adantl ( ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ∧ ( 𝑑𝐽 ∧ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) ) → ( ( coe1𝑑 ) ‘ 𝑏 ) ∈ { 𝑐 ∣ ∃ 𝑒𝐽 ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏𝑐 = ( ( coe1𝑒 ) ‘ 𝑏 ) ) } )
109 90 108 sseldd ( ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ∧ ( 𝑑𝐽 ∧ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) ) → ( ( coe1𝑑 ) ‘ 𝑏 ) ∈ { 𝑐 ∣ ∃ 𝑒𝐼 ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏𝑐 = ( ( coe1𝑒 ) ‘ 𝑏 ) ) } )
110 104 rexbidv ( 𝑐 = ( ( coe1𝑑 ) ‘ 𝑏 ) → ( ∃ 𝑒𝐼 ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏𝑐 = ( ( coe1𝑒 ) ‘ 𝑏 ) ) ↔ ∃ 𝑒𝐼 ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏 ∧ ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑒 ) ‘ 𝑏 ) ) ) )
111 102 110 elab ( ( ( coe1𝑑 ) ‘ 𝑏 ) ∈ { 𝑐 ∣ ∃ 𝑒𝐼 ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏𝑐 = ( ( coe1𝑒 ) ‘ 𝑏 ) ) } ↔ ∃ 𝑒𝐼 ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏 ∧ ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑒 ) ‘ 𝑏 ) ) )
112 simpll2 ( ( ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ∧ ( 𝑑𝐽 ∧ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) ) ∧ ( 𝑒𝐼 ∧ ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏 ∧ ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑒 ) ‘ 𝑏 ) ) ) ) → 𝜑 )
113 112 59 syl ( ( ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ∧ ( 𝑑𝐽 ∧ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) ) ∧ ( 𝑒𝐼 ∧ ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏 ∧ ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑒 ) ‘ 𝑏 ) ) ) ) → 𝑃 ∈ Ring )
114 ringgrp ( 𝑃 ∈ Ring → 𝑃 ∈ Grp )
115 113 114 syl ( ( ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ∧ ( 𝑑𝐽 ∧ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) ) ∧ ( 𝑒𝐼 ∧ ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏 ∧ ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑒 ) ‘ 𝑏 ) ) ) ) → 𝑃 ∈ Grp )
116 112 11 syl ( ( ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ∧ ( 𝑑𝐽 ∧ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) ) ∧ ( 𝑒𝐼 ∧ ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏 ∧ ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑒 ) ‘ 𝑏 ) ) ) ) → 𝐽 ⊆ ( Base ‘ 𝑃 ) )
117 simplrl ( ( ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ∧ ( 𝑑𝐽 ∧ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) ) ∧ ( 𝑒𝐼 ∧ ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏 ∧ ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑒 ) ‘ 𝑏 ) ) ) ) → 𝑑𝐽 )
118 116 117 sseldd ( ( ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ∧ ( 𝑑𝐽 ∧ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) ) ∧ ( 𝑒𝐼 ∧ ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏 ∧ ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑒 ) ‘ 𝑏 ) ) ) ) → 𝑑 ∈ ( Base ‘ 𝑃 ) )
119 9 2 lidlss ( 𝐼𝑈𝐼 ⊆ ( Base ‘ 𝑃 ) )
120 5 119 syl ( 𝜑𝐼 ⊆ ( Base ‘ 𝑃 ) )
121 112 120 syl ( ( ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ∧ ( 𝑑𝐽 ∧ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) ) ∧ ( 𝑒𝐼 ∧ ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏 ∧ ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑒 ) ‘ 𝑏 ) ) ) ) → 𝐼 ⊆ ( Base ‘ 𝑃 ) )
122 simprl ( ( ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ∧ ( 𝑑𝐽 ∧ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) ) ∧ ( 𝑒𝐼 ∧ ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏 ∧ ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑒 ) ‘ 𝑏 ) ) ) ) → 𝑒𝐼 )
123 121 122 sseldd ( ( ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ∧ ( 𝑑𝐽 ∧ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) ) ∧ ( 𝑒𝐼 ∧ ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏 ∧ ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑒 ) ‘ 𝑏 ) ) ) ) → 𝑒 ∈ ( Base ‘ 𝑃 ) )
124 eqid ( +g𝑃 ) = ( +g𝑃 )
125 eqid ( -g𝑃 ) = ( -g𝑃 )
126 9 124 125 grpnpcan ( ( 𝑃 ∈ Grp ∧ 𝑑 ∈ ( Base ‘ 𝑃 ) ∧ 𝑒 ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝑑 ( -g𝑃 ) 𝑒 ) ( +g𝑃 ) 𝑒 ) = 𝑑 )
127 115 118 123 126 syl3anc ( ( ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ∧ ( 𝑑𝐽 ∧ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) ) ∧ ( 𝑒𝐼 ∧ ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏 ∧ ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑒 ) ‘ 𝑏 ) ) ) ) → ( ( 𝑑 ( -g𝑃 ) 𝑒 ) ( +g𝑃 ) 𝑒 ) = 𝑑 )
128 5 3ad2ant2 ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) → 𝐼𝑈 )
129 128 ad2antrr ( ( ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ∧ ( 𝑑𝐽 ∧ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) ) ∧ ( 𝑒𝐼 ∧ ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏 ∧ ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑒 ) ‘ 𝑏 ) ) ) ) → 𝐼𝑈 )
130 simpll1 ( ( ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ∧ ( 𝑑𝐽 ∧ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) ) ∧ ( 𝑒𝐼 ∧ ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏 ∧ ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑒 ) ‘ 𝑏 ) ) ) ) → 𝑏 ∈ ℕ0 )
131 112 4 syl ( ( ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ∧ ( 𝑑𝐽 ∧ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) ) ∧ ( 𝑒𝐼 ∧ ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏 ∧ ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑒 ) ‘ 𝑏 ) ) ) ) → 𝑅 ∈ Ring )
132 simplrr ( ( ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ∧ ( 𝑑𝐽 ∧ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) ) ∧ ( 𝑒𝐼 ∧ ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏 ∧ ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑒 ) ‘ 𝑏 ) ) ) ) → ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 )
133 simprrl ( ( ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ∧ ( 𝑑𝐽 ∧ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) ) ∧ ( 𝑒𝐼 ∧ ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏 ∧ ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑒 ) ‘ 𝑏 ) ) ) ) → ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏 )
134 eqid ( coe1𝑑 ) = ( coe1𝑑 )
135 eqid ( coe1𝑒 ) = ( coe1𝑒 )
136 simprrr ( ( ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ∧ ( 𝑑𝐽 ∧ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) ) ∧ ( 𝑒𝐼 ∧ ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏 ∧ ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑒 ) ‘ 𝑏 ) ) ) ) → ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑒 ) ‘ 𝑏 ) )
137 13 1 9 125 130 131 118 132 123 133 134 135 136 deg1sublt ( ( ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ∧ ( 𝑑𝐽 ∧ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) ) ∧ ( 𝑒𝐼 ∧ ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏 ∧ ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑒 ) ‘ 𝑏 ) ) ) ) → ( ( deg1𝑅 ) ‘ ( 𝑑 ( -g𝑃 ) 𝑒 ) ) < 𝑏 )
138 112 6 syl ( ( ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ∧ ( 𝑑𝐽 ∧ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) ) ∧ ( 𝑒𝐼 ∧ ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏 ∧ ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑒 ) ‘ 𝑏 ) ) ) ) → 𝐽𝑈 )
139 7 3ad2ant2 ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) → 𝐼𝐽 )
140 139 ad2antrr ( ( ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ∧ ( 𝑑𝐽 ∧ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) ) ∧ ( 𝑒𝐼 ∧ ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏 ∧ ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑒 ) ‘ 𝑏 ) ) ) ) → 𝐼𝐽 )
141 140 122 sseldd ( ( ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ∧ ( 𝑑𝐽 ∧ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) ) ∧ ( 𝑒𝐼 ∧ ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏 ∧ ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑒 ) ‘ 𝑏 ) ) ) ) → 𝑒𝐽 )
142 2 125 lidlsubcl ( ( ( 𝑃 ∈ Ring ∧ 𝐽𝑈 ) ∧ ( 𝑑𝐽𝑒𝐽 ) ) → ( 𝑑 ( -g𝑃 ) 𝑒 ) ∈ 𝐽 )
143 113 138 117 141 142 syl22anc ( ( ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ∧ ( 𝑑𝐽 ∧ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) ) ∧ ( 𝑒𝐼 ∧ ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏 ∧ ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑒 ) ‘ 𝑏 ) ) ) ) → ( 𝑑 ( -g𝑃 ) 𝑒 ) ∈ 𝐽 )
144 simpll3 ( ( ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ∧ ( 𝑑𝐽 ∧ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) ) ∧ ( 𝑒𝐼 ∧ ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏 ∧ ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑒 ) ‘ 𝑏 ) ) ) ) → ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) )
145 fveq2 ( 𝑎 = ( 𝑑 ( -g𝑃 ) 𝑒 ) → ( ( deg1𝑅 ) ‘ 𝑎 ) = ( ( deg1𝑅 ) ‘ ( 𝑑 ( -g𝑃 ) 𝑒 ) ) )
146 145 breq1d ( 𝑎 = ( 𝑑 ( -g𝑃 ) 𝑒 ) → ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏 ↔ ( ( deg1𝑅 ) ‘ ( 𝑑 ( -g𝑃 ) 𝑒 ) ) < 𝑏 ) )
147 eleq1 ( 𝑎 = ( 𝑑 ( -g𝑃 ) 𝑒 ) → ( 𝑎𝐼 ↔ ( 𝑑 ( -g𝑃 ) 𝑒 ) ∈ 𝐼 ) )
148 146 147 imbi12d ( 𝑎 = ( 𝑑 ( -g𝑃 ) 𝑒 ) → ( ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ↔ ( ( ( deg1𝑅 ) ‘ ( 𝑑 ( -g𝑃 ) 𝑒 ) ) < 𝑏 → ( 𝑑 ( -g𝑃 ) 𝑒 ) ∈ 𝐼 ) ) )
149 148 rspcva ( ( ( 𝑑 ( -g𝑃 ) 𝑒 ) ∈ 𝐽 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) → ( ( ( deg1𝑅 ) ‘ ( 𝑑 ( -g𝑃 ) 𝑒 ) ) < 𝑏 → ( 𝑑 ( -g𝑃 ) 𝑒 ) ∈ 𝐼 ) )
150 143 144 149 syl2anc ( ( ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ∧ ( 𝑑𝐽 ∧ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) ) ∧ ( 𝑒𝐼 ∧ ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏 ∧ ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑒 ) ‘ 𝑏 ) ) ) ) → ( ( ( deg1𝑅 ) ‘ ( 𝑑 ( -g𝑃 ) 𝑒 ) ) < 𝑏 → ( 𝑑 ( -g𝑃 ) 𝑒 ) ∈ 𝐼 ) )
151 137 150 mpd ( ( ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ∧ ( 𝑑𝐽 ∧ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) ) ∧ ( 𝑒𝐼 ∧ ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏 ∧ ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑒 ) ‘ 𝑏 ) ) ) ) → ( 𝑑 ( -g𝑃 ) 𝑒 ) ∈ 𝐼 )
152 2 124 lidlacl ( ( ( 𝑃 ∈ Ring ∧ 𝐼𝑈 ) ∧ ( ( 𝑑 ( -g𝑃 ) 𝑒 ) ∈ 𝐼𝑒𝐼 ) ) → ( ( 𝑑 ( -g𝑃 ) 𝑒 ) ( +g𝑃 ) 𝑒 ) ∈ 𝐼 )
153 113 129 151 122 152 syl22anc ( ( ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ∧ ( 𝑑𝐽 ∧ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) ) ∧ ( 𝑒𝐼 ∧ ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏 ∧ ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑒 ) ‘ 𝑏 ) ) ) ) → ( ( 𝑑 ( -g𝑃 ) 𝑒 ) ( +g𝑃 ) 𝑒 ) ∈ 𝐼 )
154 127 153 eqeltrrd ( ( ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ∧ ( 𝑑𝐽 ∧ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) ) ∧ ( 𝑒𝐼 ∧ ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏 ∧ ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑒 ) ‘ 𝑏 ) ) ) ) → 𝑑𝐼 )
155 154 rexlimdvaa ( ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ∧ ( 𝑑𝐽 ∧ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) ) → ( ∃ 𝑒𝐼 ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏 ∧ ( ( coe1𝑑 ) ‘ 𝑏 ) = ( ( coe1𝑒 ) ‘ 𝑏 ) ) → 𝑑𝐼 ) )
156 111 155 syl5bi ( ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ∧ ( 𝑑𝐽 ∧ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) ) → ( ( ( coe1𝑑 ) ‘ 𝑏 ) ∈ { 𝑐 ∣ ∃ 𝑒𝐼 ( ( ( deg1𝑅 ) ‘ 𝑒 ) ≤ 𝑏𝑐 = ( ( coe1𝑒 ) ‘ 𝑏 ) ) } → 𝑑𝐼 ) )
157 109 156 mpd ( ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ∧ ( 𝑑𝐽 ∧ ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏 ) ) → 𝑑𝐼 )
158 157 expr ( ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ∧ 𝑑𝐽 ) → ( ( ( deg1𝑅 ) ‘ 𝑑 ) ≤ 𝑏𝑑𝐼 ) )
159 74 158 sylbid ( ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ∧ 𝑑𝐽 ) → ( ( ( deg1𝑅 ) ‘ 𝑑 ) < ( 𝑏 + 1 ) → 𝑑𝐼 ) )
160 159 ralrimiva ( ( 𝑏 ∈ ℕ0𝜑 ∧ ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) → ∀ 𝑑𝐽 ( ( ( deg1𝑅 ) ‘ 𝑑 ) < ( 𝑏 + 1 ) → 𝑑𝐼 ) )
161 160 3exp ( 𝑏 ∈ ℕ0 → ( 𝜑 → ( ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) → ∀ 𝑑𝐽 ( ( ( deg1𝑅 ) ‘ 𝑑 ) < ( 𝑏 + 1 ) → 𝑑𝐼 ) ) ) )
162 161 a2d ( 𝑏 ∈ ℕ0 → ( ( 𝜑 → ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) → ( 𝜑 → ∀ 𝑑𝐽 ( ( ( deg1𝑅 ) ‘ 𝑑 ) < ( 𝑏 + 1 ) → 𝑑𝐼 ) ) ) )
163 39 43 53 43 66 162 nn0ind ( 𝑏 ∈ ℕ0 → ( 𝜑 → ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) )
164 rsp ( ∀ 𝑎𝐽 ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) → ( 𝑎𝐽 → ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) )
165 163 164 syl6com ( 𝜑 → ( 𝑏 ∈ ℕ0 → ( 𝑎𝐽 → ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ) )
166 165 com23 ( 𝜑 → ( 𝑎𝐽 → ( 𝑏 ∈ ℕ0 → ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) ) )
167 166 imp ( ( 𝜑𝑎𝐽 ) → ( 𝑏 ∈ ℕ0 → ( ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) ) )
168 167 rexlimdv ( ( 𝜑𝑎𝐽 ) → ( ∃ 𝑏 ∈ ℕ0 ( ( deg1𝑅 ) ‘ 𝑎 ) < 𝑏𝑎𝐼 ) )
169 35 168 mpd ( ( 𝜑𝑎𝐽 ) → 𝑎𝐼 )
170 7 169 eqelssd ( 𝜑𝐼 = 𝐽 )