Step |
Hyp |
Ref |
Expression |
1 |
|
hbtlem.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
hbtlem.u |
⊢ 𝑈 = ( LIdeal ‘ 𝑃 ) |
3 |
|
hbtlem.s |
⊢ 𝑆 = ( ldgIdlSeq ‘ 𝑅 ) |
4 |
|
hbtlem7.t |
⊢ 𝑇 = ( LIdeal ‘ 𝑅 ) |
5 |
|
simpr |
⊢ ( ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) → 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) |
6 |
5
|
reximi |
⊢ ( ∃ 𝑗 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) → ∃ 𝑗 ∈ 𝐼 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) |
7 |
6
|
ss2abi |
⊢ { 𝑦 ∣ ∃ 𝑗 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) } ⊆ { 𝑦 ∣ ∃ 𝑗 ∈ 𝐼 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) } |
8 |
|
abrexexg |
⊢ ( 𝐼 ∈ 𝑈 → { 𝑦 ∣ ∃ 𝑗 ∈ 𝐼 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) } ∈ V ) |
9 |
|
ssexg |
⊢ ( ( { 𝑦 ∣ ∃ 𝑗 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) } ⊆ { 𝑦 ∣ ∃ 𝑗 ∈ 𝐼 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) } ∧ { 𝑦 ∣ ∃ 𝑗 ∈ 𝐼 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) } ∈ V ) → { 𝑦 ∣ ∃ 𝑗 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) } ∈ V ) |
10 |
7 8 9
|
sylancr |
⊢ ( 𝐼 ∈ 𝑈 → { 𝑦 ∣ ∃ 𝑗 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) } ∈ V ) |
11 |
10
|
ralrimivw |
⊢ ( 𝐼 ∈ 𝑈 → ∀ 𝑥 ∈ ℕ0 { 𝑦 ∣ ∃ 𝑗 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) } ∈ V ) |
12 |
11
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ∀ 𝑥 ∈ ℕ0 { 𝑦 ∣ ∃ 𝑗 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) } ∈ V ) |
13 |
|
eqid |
⊢ ( 𝑥 ∈ ℕ0 ↦ { 𝑦 ∣ ∃ 𝑗 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) } ) = ( 𝑥 ∈ ℕ0 ↦ { 𝑦 ∣ ∃ 𝑗 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) } ) |
14 |
13
|
fnmpt |
⊢ ( ∀ 𝑥 ∈ ℕ0 { 𝑦 ∣ ∃ 𝑗 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) } ∈ V → ( 𝑥 ∈ ℕ0 ↦ { 𝑦 ∣ ∃ 𝑗 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) } ) Fn ℕ0 ) |
15 |
12 14
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( 𝑥 ∈ ℕ0 ↦ { 𝑦 ∣ ∃ 𝑗 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) } ) Fn ℕ0 ) |
16 |
|
elex |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ V ) |
17 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( Poly1 ‘ 𝑟 ) = ( Poly1 ‘ 𝑅 ) ) |
18 |
17 1
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( Poly1 ‘ 𝑟 ) = 𝑃 ) |
19 |
18
|
fveq2d |
⊢ ( 𝑟 = 𝑅 → ( LIdeal ‘ ( Poly1 ‘ 𝑟 ) ) = ( LIdeal ‘ 𝑃 ) ) |
20 |
19 2
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( LIdeal ‘ ( Poly1 ‘ 𝑟 ) ) = 𝑈 ) |
21 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( deg1 ‘ 𝑟 ) = ( deg1 ‘ 𝑅 ) ) |
22 |
21
|
fveq1d |
⊢ ( 𝑟 = 𝑅 → ( ( deg1 ‘ 𝑟 ) ‘ 𝑗 ) = ( ( deg1 ‘ 𝑅 ) ‘ 𝑗 ) ) |
23 |
22
|
breq1d |
⊢ ( 𝑟 = 𝑅 → ( ( ( deg1 ‘ 𝑟 ) ‘ 𝑗 ) ≤ 𝑥 ↔ ( ( deg1 ‘ 𝑅 ) ‘ 𝑗 ) ≤ 𝑥 ) ) |
24 |
23
|
anbi1d |
⊢ ( 𝑟 = 𝑅 → ( ( ( ( deg1 ‘ 𝑟 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) ↔ ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) ) ) |
25 |
24
|
rexbidv |
⊢ ( 𝑟 = 𝑅 → ( ∃ 𝑗 ∈ 𝑖 ( ( ( deg1 ‘ 𝑟 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) ↔ ∃ 𝑗 ∈ 𝑖 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) ) ) |
26 |
25
|
abbidv |
⊢ ( 𝑟 = 𝑅 → { 𝑦 ∣ ∃ 𝑗 ∈ 𝑖 ( ( ( deg1 ‘ 𝑟 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) } = { 𝑦 ∣ ∃ 𝑗 ∈ 𝑖 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) } ) |
27 |
26
|
mpteq2dv |
⊢ ( 𝑟 = 𝑅 → ( 𝑥 ∈ ℕ0 ↦ { 𝑦 ∣ ∃ 𝑗 ∈ 𝑖 ( ( ( deg1 ‘ 𝑟 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) } ) = ( 𝑥 ∈ ℕ0 ↦ { 𝑦 ∣ ∃ 𝑗 ∈ 𝑖 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) } ) ) |
28 |
20 27
|
mpteq12dv |
⊢ ( 𝑟 = 𝑅 → ( 𝑖 ∈ ( LIdeal ‘ ( Poly1 ‘ 𝑟 ) ) ↦ ( 𝑥 ∈ ℕ0 ↦ { 𝑦 ∣ ∃ 𝑗 ∈ 𝑖 ( ( ( deg1 ‘ 𝑟 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) } ) ) = ( 𝑖 ∈ 𝑈 ↦ ( 𝑥 ∈ ℕ0 ↦ { 𝑦 ∣ ∃ 𝑗 ∈ 𝑖 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) } ) ) ) |
29 |
|
df-ldgis |
⊢ ldgIdlSeq = ( 𝑟 ∈ V ↦ ( 𝑖 ∈ ( LIdeal ‘ ( Poly1 ‘ 𝑟 ) ) ↦ ( 𝑥 ∈ ℕ0 ↦ { 𝑦 ∣ ∃ 𝑗 ∈ 𝑖 ( ( ( deg1 ‘ 𝑟 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) } ) ) ) |
30 |
28 29 2
|
mptfvmpt |
⊢ ( 𝑅 ∈ V → ( ldgIdlSeq ‘ 𝑅 ) = ( 𝑖 ∈ 𝑈 ↦ ( 𝑥 ∈ ℕ0 ↦ { 𝑦 ∣ ∃ 𝑗 ∈ 𝑖 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) } ) ) ) |
31 |
16 30
|
syl |
⊢ ( 𝑅 ∈ Ring → ( ldgIdlSeq ‘ 𝑅 ) = ( 𝑖 ∈ 𝑈 ↦ ( 𝑥 ∈ ℕ0 ↦ { 𝑦 ∣ ∃ 𝑗 ∈ 𝑖 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) } ) ) ) |
32 |
3 31
|
syl5eq |
⊢ ( 𝑅 ∈ Ring → 𝑆 = ( 𝑖 ∈ 𝑈 ↦ ( 𝑥 ∈ ℕ0 ↦ { 𝑦 ∣ ∃ 𝑗 ∈ 𝑖 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) } ) ) ) |
33 |
32
|
fveq1d |
⊢ ( 𝑅 ∈ Ring → ( 𝑆 ‘ 𝐼 ) = ( ( 𝑖 ∈ 𝑈 ↦ ( 𝑥 ∈ ℕ0 ↦ { 𝑦 ∣ ∃ 𝑗 ∈ 𝑖 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) } ) ) ‘ 𝐼 ) ) |
34 |
|
rexeq |
⊢ ( 𝑖 = 𝐼 → ( ∃ 𝑗 ∈ 𝑖 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) ↔ ∃ 𝑗 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) ) ) |
35 |
34
|
abbidv |
⊢ ( 𝑖 = 𝐼 → { 𝑦 ∣ ∃ 𝑗 ∈ 𝑖 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) } = { 𝑦 ∣ ∃ 𝑗 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) } ) |
36 |
35
|
mpteq2dv |
⊢ ( 𝑖 = 𝐼 → ( 𝑥 ∈ ℕ0 ↦ { 𝑦 ∣ ∃ 𝑗 ∈ 𝑖 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) } ) = ( 𝑥 ∈ ℕ0 ↦ { 𝑦 ∣ ∃ 𝑗 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) } ) ) |
37 |
|
eqid |
⊢ ( 𝑖 ∈ 𝑈 ↦ ( 𝑥 ∈ ℕ0 ↦ { 𝑦 ∣ ∃ 𝑗 ∈ 𝑖 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) } ) ) = ( 𝑖 ∈ 𝑈 ↦ ( 𝑥 ∈ ℕ0 ↦ { 𝑦 ∣ ∃ 𝑗 ∈ 𝑖 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) } ) ) |
38 |
|
nn0ex |
⊢ ℕ0 ∈ V |
39 |
38
|
mptex |
⊢ ( 𝑥 ∈ ℕ0 ↦ { 𝑦 ∣ ∃ 𝑗 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) } ) ∈ V |
40 |
36 37 39
|
fvmpt |
⊢ ( 𝐼 ∈ 𝑈 → ( ( 𝑖 ∈ 𝑈 ↦ ( 𝑥 ∈ ℕ0 ↦ { 𝑦 ∣ ∃ 𝑗 ∈ 𝑖 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) } ) ) ‘ 𝐼 ) = ( 𝑥 ∈ ℕ0 ↦ { 𝑦 ∣ ∃ 𝑗 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) } ) ) |
41 |
33 40
|
sylan9eq |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( 𝑆 ‘ 𝐼 ) = ( 𝑥 ∈ ℕ0 ↦ { 𝑦 ∣ ∃ 𝑗 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) } ) ) |
42 |
41
|
fneq1d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( ( 𝑆 ‘ 𝐼 ) Fn ℕ0 ↔ ( 𝑥 ∈ ℕ0 ↦ { 𝑦 ∣ ∃ 𝑗 ∈ 𝐼 ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑦 = ( ( coe1 ‘ 𝑗 ) ‘ 𝑥 ) ) } ) Fn ℕ0 ) ) |
43 |
15 42
|
mpbird |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( 𝑆 ‘ 𝐼 ) Fn ℕ0 ) |
44 |
1 2 3 4
|
hbtlem2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝑇 ) |
45 |
44
|
3expa |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝑇 ) |
46 |
45
|
ralrimiva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ∀ 𝑥 ∈ ℕ0 ( ( 𝑆 ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝑇 ) |
47 |
|
ffnfv |
⊢ ( ( 𝑆 ‘ 𝐼 ) : ℕ0 ⟶ 𝑇 ↔ ( ( 𝑆 ‘ 𝐼 ) Fn ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( ( 𝑆 ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝑇 ) ) |
48 |
43 46 47
|
sylanbrc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( 𝑆 ‘ 𝐼 ) : ℕ0 ⟶ 𝑇 ) |