Metamath Proof Explorer


Theorem hbxfrbi

Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. See hbxfreq for equality version. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)

Ref Expression
Hypotheses hbxfrbi.1 ( 𝜑𝜓 )
hbxfrbi.2 ( 𝜓 → ∀ 𝑥 𝜓 )
Assertion hbxfrbi ( 𝜑 → ∀ 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 hbxfrbi.1 ( 𝜑𝜓 )
2 hbxfrbi.2 ( 𝜓 → ∀ 𝑥 𝜓 )
3 1 albii ( ∀ 𝑥 𝜑 ↔ ∀ 𝑥 𝜓 )
4 2 1 3 3imtr4i ( 𝜑 → ∀ 𝑥 𝜑 )