| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 2 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 3 | 1 2 | oveq12d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑓 ‘ 𝑦 )  −ℎ  ( 𝑓 ‘ 𝑧 ) )  =  ( ( 𝐹 ‘ 𝑦 )  −ℎ  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 4 | 3 | fveq2d | ⊢ ( 𝑓  =  𝐹  →  ( normℎ ‘ ( ( 𝑓 ‘ 𝑦 )  −ℎ  ( 𝑓 ‘ 𝑧 ) ) )  =  ( normℎ ‘ ( ( 𝐹 ‘ 𝑦 )  −ℎ  ( 𝐹 ‘ 𝑧 ) ) ) ) | 
						
							| 5 | 4 | breq1d | ⊢ ( 𝑓  =  𝐹  →  ( ( normℎ ‘ ( ( 𝑓 ‘ 𝑦 )  −ℎ  ( 𝑓 ‘ 𝑧 ) ) )  <  𝑥  ↔  ( normℎ ‘ ( ( 𝐹 ‘ 𝑦 )  −ℎ  ( 𝐹 ‘ 𝑧 ) ) )  <  𝑥 ) ) | 
						
							| 6 | 5 | rexralbidv | ⊢ ( 𝑓  =  𝐹  →  ( ∃ 𝑦  ∈  ℕ ∀ 𝑧  ∈  ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑦 )  −ℎ  ( 𝑓 ‘ 𝑧 ) ) )  <  𝑥  ↔  ∃ 𝑦  ∈  ℕ ∀ 𝑧  ∈  ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑦 )  −ℎ  ( 𝐹 ‘ 𝑧 ) ) )  <  𝑥 ) ) | 
						
							| 7 | 6 | ralbidv | ⊢ ( 𝑓  =  𝐹  →  ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  ℕ ∀ 𝑧  ∈  ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑦 )  −ℎ  ( 𝑓 ‘ 𝑧 ) ) )  <  𝑥  ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  ℕ ∀ 𝑧  ∈  ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑦 )  −ℎ  ( 𝐹 ‘ 𝑧 ) ) )  <  𝑥 ) ) | 
						
							| 8 |  | df-hcau | ⊢ Cauchy  =  { 𝑓  ∈  (  ℋ  ↑m  ℕ )  ∣  ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  ℕ ∀ 𝑧  ∈  ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑦 )  −ℎ  ( 𝑓 ‘ 𝑧 ) ) )  <  𝑥 } | 
						
							| 9 | 7 8 | elrab2 | ⊢ ( 𝐹  ∈  Cauchy  ↔  ( 𝐹  ∈  (  ℋ  ↑m  ℕ )  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  ℕ ∀ 𝑧  ∈  ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑦 )  −ℎ  ( 𝐹 ‘ 𝑧 ) ) )  <  𝑥 ) ) | 
						
							| 10 |  | ax-hilex | ⊢  ℋ  ∈  V | 
						
							| 11 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 12 | 10 11 | elmap | ⊢ ( 𝐹  ∈  (  ℋ  ↑m  ℕ )  ↔  𝐹 : ℕ ⟶  ℋ ) | 
						
							| 13 | 12 | anbi1i | ⊢ ( ( 𝐹  ∈  (  ℋ  ↑m  ℕ )  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  ℕ ∀ 𝑧  ∈  ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑦 )  −ℎ  ( 𝐹 ‘ 𝑧 ) ) )  <  𝑥 )  ↔  ( 𝐹 : ℕ ⟶  ℋ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  ℕ ∀ 𝑧  ∈  ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑦 )  −ℎ  ( 𝐹 ‘ 𝑧 ) ) )  <  𝑥 ) ) | 
						
							| 14 | 9 13 | bitri | ⊢ ( 𝐹  ∈  Cauchy  ↔  ( 𝐹 : ℕ ⟶  ℋ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  ℕ ∀ 𝑧  ∈  ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑦 )  −ℎ  ( 𝐹 ‘ 𝑧 ) ) )  <  𝑥 ) ) |