| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hcau | ⊢ ( 𝐹  ∈  Cauchy  ↔  ( 𝐹 : ℕ ⟶  ℋ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  ℕ ∀ 𝑧  ∈  ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑦 )  −ℎ  ( 𝐹 ‘ 𝑧 ) ) )  <  𝑥 ) ) | 
						
							| 2 | 1 | simprbi | ⊢ ( 𝐹  ∈  Cauchy  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  ℕ ∀ 𝑧  ∈  ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑦 )  −ℎ  ( 𝐹 ‘ 𝑧 ) ) )  <  𝑥 ) | 
						
							| 3 |  | breq2 | ⊢ ( 𝑥  =  𝐴  →  ( ( normℎ ‘ ( ( 𝐹 ‘ 𝑦 )  −ℎ  ( 𝐹 ‘ 𝑧 ) ) )  <  𝑥  ↔  ( normℎ ‘ ( ( 𝐹 ‘ 𝑦 )  −ℎ  ( 𝐹 ‘ 𝑧 ) ) )  <  𝐴 ) ) | 
						
							| 4 | 3 | rexralbidv | ⊢ ( 𝑥  =  𝐴  →  ( ∃ 𝑦  ∈  ℕ ∀ 𝑧  ∈  ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑦 )  −ℎ  ( 𝐹 ‘ 𝑧 ) ) )  <  𝑥  ↔  ∃ 𝑦  ∈  ℕ ∀ 𝑧  ∈  ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑦 )  −ℎ  ( 𝐹 ‘ 𝑧 ) ) )  <  𝐴 ) ) | 
						
							| 5 | 4 | rspccva | ⊢ ( ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  ℕ ∀ 𝑧  ∈  ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑦 )  −ℎ  ( 𝐹 ‘ 𝑧 ) ) )  <  𝑥  ∧  𝐴  ∈  ℝ+ )  →  ∃ 𝑦  ∈  ℕ ∀ 𝑧  ∈  ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑦 )  −ℎ  ( 𝐹 ‘ 𝑧 ) ) )  <  𝐴 ) | 
						
							| 6 | 2 5 | sylan | ⊢ ( ( 𝐹  ∈  Cauchy  ∧  𝐴  ∈  ℝ+ )  →  ∃ 𝑦  ∈  ℕ ∀ 𝑧  ∈  ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑦 )  −ℎ  ( 𝐹 ‘ 𝑧 ) ) )  <  𝐴 ) |