| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmapglem5.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
hdmapglem5.e |
⊢ 𝐸 = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 |
| 3 |
|
hdmapglem5.o |
⊢ 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
hdmapglem5.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
hdmapglem5.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 6 |
|
hdmapglem5.p |
⊢ + = ( +g ‘ 𝑈 ) |
| 7 |
|
hdmapglem5.m |
⊢ − = ( -g ‘ 𝑈 ) |
| 8 |
|
hdmapglem5.q |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
| 9 |
|
hdmapglem5.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
| 10 |
|
hdmapglem5.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 11 |
|
hdmapglem5.t |
⊢ × = ( .r ‘ 𝑅 ) |
| 12 |
|
hdmapglem5.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 13 |
|
hdmapglem5.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
| 14 |
|
hdmapglem5.g |
⊢ 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) |
| 15 |
|
hdmapglem5.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 16 |
|
hdmapglem5.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝑂 ‘ { 𝐸 } ) ) |
| 17 |
|
hdmapglem5.d |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝑂 ‘ { 𝐸 } ) ) |
| 18 |
|
hdmapglem5.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝐵 ) |
| 19 |
|
hdmapglem5.j |
⊢ ( 𝜑 → 𝐽 ∈ 𝐵 ) |
| 20 |
1 4 15
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 21 |
9
|
lmodring |
⊢ ( 𝑈 ∈ LMod → 𝑅 ∈ Ring ) |
| 22 |
20 21
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 23 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 24 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 25 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
| 26 |
1 23 24 4 5 25 2 15
|
dvheveccl |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑈 ) } ) ) |
| 27 |
26
|
eldifad |
⊢ ( 𝜑 → 𝐸 ∈ 𝑉 ) |
| 28 |
27
|
snssd |
⊢ ( 𝜑 → { 𝐸 } ⊆ 𝑉 ) |
| 29 |
1 4 5 3
|
dochssv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ { 𝐸 } ⊆ 𝑉 ) → ( 𝑂 ‘ { 𝐸 } ) ⊆ 𝑉 ) |
| 30 |
15 28 29
|
syl2anc |
⊢ ( 𝜑 → ( 𝑂 ‘ { 𝐸 } ) ⊆ 𝑉 ) |
| 31 |
30 16
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
| 32 |
30 17
|
sseldd |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
| 33 |
1 4 5 9 10 13 15 31 32
|
hdmapipcl |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) ∈ 𝐵 ) |
| 34 |
1 4 9 10 14 15 33
|
hgmapcl |
⊢ ( 𝜑 → ( 𝐺 ‘ ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) ) ∈ 𝐵 ) |
| 35 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 36 |
10 11 35
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐺 ‘ ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) ) ∈ 𝐵 ) → ( ( 1r ‘ 𝑅 ) × ( 𝐺 ‘ ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) ) ) = ( 𝐺 ‘ ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) ) ) |
| 37 |
22 34 36
|
syl2anc |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) × ( 𝐺 ‘ ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) ) ) = ( 𝐺 ‘ ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) ) ) |
| 38 |
10 35
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 39 |
22 38
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 40 |
1 4 9 35 14 15
|
hgmapval1 |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑅 ) ) |
| 41 |
40
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) × ( 𝐺 ‘ ( 1r ‘ 𝑅 ) ) ) = ( ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) × ( 1r ‘ 𝑅 ) ) ) |
| 42 |
10 11 35
|
ringridm |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) ∈ 𝐵 ) → ( ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) × ( 1r ‘ 𝑅 ) ) = ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) ) |
| 43 |
22 33 42
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) × ( 1r ‘ 𝑅 ) ) = ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) ) |
| 44 |
41 43
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) × ( 𝐺 ‘ ( 1r ‘ 𝑅 ) ) ) = ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) ) |
| 45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 33 39 44
|
hdmapinvlem4 |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) × ( 𝐺 ‘ ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) ) ) = ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐷 ) ) |
| 46 |
37 45
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐺 ‘ ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) ) = ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐷 ) ) |