| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmapglem7.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
hdmapglem7.e |
⊢ 𝐸 = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 |
| 3 |
|
hdmapglem7.o |
⊢ 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
hdmapglem7.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
hdmapglem7.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 6 |
|
hdmapglem7.p |
⊢ + = ( +g ‘ 𝑈 ) |
| 7 |
|
hdmapglem7.q |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
| 8 |
|
hdmapglem7.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
| 9 |
|
hdmapglem7.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 10 |
|
hdmapglem7.a |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
| 11 |
|
hdmapglem7.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 12 |
|
hdmapglem7.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 13 |
|
hdmapglem7.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 14 |
|
hdmapglem7.t |
⊢ × = ( .r ‘ 𝑅 ) |
| 15 |
|
hdmapglem7.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 16 |
|
hdmapglem7.c |
⊢ ✚ = ( +g ‘ 𝑅 ) |
| 17 |
|
hdmapglem7.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
| 18 |
|
hdmapglem7.g |
⊢ 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) |
| 19 |
|
hdmapglem7.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 20 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
hdmapglem7a |
⊢ ( 𝜑 → ∃ 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∃ 𝑘 ∈ 𝐵 𝑋 = ( ( 𝑘 · 𝐸 ) + 𝑢 ) ) |
| 21 |
1 2 3 4 5 6 7 8 9 10 11 12 19
|
hdmapglem7a |
⊢ ( 𝜑 → ∃ 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∃ 𝑙 ∈ 𝐵 𝑌 = ( ( 𝑙 · 𝐸 ) + 𝑣 ) ) |
| 22 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ∈ 𝐵 ) ) ∧ ( 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑙 ∈ 𝐵 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 23 |
1 4 12
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 24 |
8
|
lmodring |
⊢ ( 𝑈 ∈ LMod → 𝑅 ∈ Ring ) |
| 25 |
23 24
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 26 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ∈ 𝐵 ) ) ∧ ( 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑙 ∈ 𝐵 ) ) → 𝑅 ∈ Ring ) |
| 27 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ∈ 𝐵 ) ) ∧ ( 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑙 ∈ 𝐵 ) ) → 𝑘 ∈ 𝐵 ) |
| 28 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ∈ 𝐵 ) ) ∧ ( 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑙 ∈ 𝐵 ) ) → 𝑙 ∈ 𝐵 ) |
| 29 |
1 4 8 9 18 22 28
|
hgmapcl |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ∈ 𝐵 ) ) ∧ ( 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑙 ∈ 𝐵 ) ) → ( 𝐺 ‘ 𝑙 ) ∈ 𝐵 ) |
| 30 |
9 14
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑘 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑙 ) ∈ 𝐵 ) → ( 𝑘 × ( 𝐺 ‘ 𝑙 ) ) ∈ 𝐵 ) |
| 31 |
26 27 29 30
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ∈ 𝐵 ) ) ∧ ( 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑙 ∈ 𝐵 ) ) → ( 𝑘 × ( 𝐺 ‘ 𝑙 ) ) ∈ 𝐵 ) |
| 32 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 33 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 34 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
| 35 |
1 32 33 4 5 34 2 12
|
dvheveccl |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑈 ) } ) ) |
| 36 |
35
|
eldifad |
⊢ ( 𝜑 → 𝐸 ∈ 𝑉 ) |
| 37 |
36
|
snssd |
⊢ ( 𝜑 → { 𝐸 } ⊆ 𝑉 ) |
| 38 |
1 4 5 3
|
dochssv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ { 𝐸 } ⊆ 𝑉 ) → ( 𝑂 ‘ { 𝐸 } ) ⊆ 𝑉 ) |
| 39 |
12 37 38
|
syl2anc |
⊢ ( 𝜑 → ( 𝑂 ‘ { 𝐸 } ) ⊆ 𝑉 ) |
| 40 |
39
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ∈ 𝐵 ) ) ∧ ( 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑙 ∈ 𝐵 ) ) → ( 𝑂 ‘ { 𝐸 } ) ⊆ 𝑉 ) |
| 41 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ∈ 𝐵 ) ) ∧ ( 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑙 ∈ 𝐵 ) ) → 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ) |
| 42 |
40 41
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ∈ 𝐵 ) ) ∧ ( 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑙 ∈ 𝐵 ) ) → 𝑢 ∈ 𝑉 ) |
| 43 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ∈ 𝐵 ) ) ∧ ( 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑙 ∈ 𝐵 ) ) → 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ) |
| 44 |
40 43
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ∈ 𝐵 ) ) ∧ ( 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑙 ∈ 𝐵 ) ) → 𝑣 ∈ 𝑉 ) |
| 45 |
1 4 5 8 9 17 22 42 44
|
hdmapipcl |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ∈ 𝐵 ) ) ∧ ( 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑙 ∈ 𝐵 ) ) → ( ( 𝑆 ‘ 𝑣 ) ‘ 𝑢 ) ∈ 𝐵 ) |
| 46 |
1 4 8 9 16 18 22 31 45
|
hgmapadd |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ∈ 𝐵 ) ) ∧ ( 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑙 ∈ 𝐵 ) ) → ( 𝐺 ‘ ( ( 𝑘 × ( 𝐺 ‘ 𝑙 ) ) ✚ ( ( 𝑆 ‘ 𝑣 ) ‘ 𝑢 ) ) ) = ( ( 𝐺 ‘ ( 𝑘 × ( 𝐺 ‘ 𝑙 ) ) ) ✚ ( 𝐺 ‘ ( ( 𝑆 ‘ 𝑣 ) ‘ 𝑢 ) ) ) ) |
| 47 |
1 4 8 9 14 18 22 27 29
|
hgmapmul |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ∈ 𝐵 ) ) ∧ ( 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑙 ∈ 𝐵 ) ) → ( 𝐺 ‘ ( 𝑘 × ( 𝐺 ‘ 𝑙 ) ) ) = ( ( 𝐺 ‘ ( 𝐺 ‘ 𝑙 ) ) × ( 𝐺 ‘ 𝑘 ) ) ) |
| 48 |
1 4 8 9 18 22 28
|
hgmapvv |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ∈ 𝐵 ) ) ∧ ( 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑙 ∈ 𝐵 ) ) → ( 𝐺 ‘ ( 𝐺 ‘ 𝑙 ) ) = 𝑙 ) |
| 49 |
48
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ∈ 𝐵 ) ) ∧ ( 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑙 ∈ 𝐵 ) ) → ( ( 𝐺 ‘ ( 𝐺 ‘ 𝑙 ) ) × ( 𝐺 ‘ 𝑘 ) ) = ( 𝑙 × ( 𝐺 ‘ 𝑘 ) ) ) |
| 50 |
47 49
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ∈ 𝐵 ) ) ∧ ( 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑙 ∈ 𝐵 ) ) → ( 𝐺 ‘ ( 𝑘 × ( 𝐺 ‘ 𝑙 ) ) ) = ( 𝑙 × ( 𝐺 ‘ 𝑘 ) ) ) |
| 51 |
|
eqid |
⊢ ( -g ‘ 𝑈 ) = ( -g ‘ 𝑈 ) |
| 52 |
1 2 3 4 5 6 51 7 8 9 14 15 17 18 22 41 43 27 27
|
hdmapglem5 |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ∈ 𝐵 ) ) ∧ ( 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑙 ∈ 𝐵 ) ) → ( 𝐺 ‘ ( ( 𝑆 ‘ 𝑣 ) ‘ 𝑢 ) ) = ( ( 𝑆 ‘ 𝑢 ) ‘ 𝑣 ) ) |
| 53 |
50 52
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ∈ 𝐵 ) ) ∧ ( 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑙 ∈ 𝐵 ) ) → ( ( 𝐺 ‘ ( 𝑘 × ( 𝐺 ‘ 𝑙 ) ) ) ✚ ( 𝐺 ‘ ( ( 𝑆 ‘ 𝑣 ) ‘ 𝑢 ) ) ) = ( ( 𝑙 × ( 𝐺 ‘ 𝑘 ) ) ✚ ( ( 𝑆 ‘ 𝑢 ) ‘ 𝑣 ) ) ) |
| 54 |
46 53
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ∈ 𝐵 ) ) ∧ ( 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑙 ∈ 𝐵 ) ) → ( 𝐺 ‘ ( ( 𝑘 × ( 𝐺 ‘ 𝑙 ) ) ✚ ( ( 𝑆 ‘ 𝑣 ) ‘ 𝑢 ) ) ) = ( ( 𝑙 × ( 𝐺 ‘ 𝑘 ) ) ✚ ( ( 𝑆 ‘ 𝑢 ) ‘ 𝑣 ) ) ) |
| 55 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ∈ 𝐵 ) ) ∧ ( 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑙 ∈ 𝐵 ) ) → 𝑋 ∈ 𝑉 ) |
| 56 |
1 2 3 4 5 6 7 8 9 10 11 22 55 14 15 16 17 18 43 41 28 27
|
hdmapglem7b |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ∈ 𝐵 ) ) ∧ ( 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑙 ∈ 𝐵 ) ) → ( ( 𝑆 ‘ ( ( 𝑙 · 𝐸 ) + 𝑣 ) ) ‘ ( ( 𝑘 · 𝐸 ) + 𝑢 ) ) = ( ( 𝑘 × ( 𝐺 ‘ 𝑙 ) ) ✚ ( ( 𝑆 ‘ 𝑣 ) ‘ 𝑢 ) ) ) |
| 57 |
56
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ∈ 𝐵 ) ) ∧ ( 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑙 ∈ 𝐵 ) ) → ( 𝐺 ‘ ( ( 𝑆 ‘ ( ( 𝑙 · 𝐸 ) + 𝑣 ) ) ‘ ( ( 𝑘 · 𝐸 ) + 𝑢 ) ) ) = ( 𝐺 ‘ ( ( 𝑘 × ( 𝐺 ‘ 𝑙 ) ) ✚ ( ( 𝑆 ‘ 𝑣 ) ‘ 𝑢 ) ) ) ) |
| 58 |
1 2 3 4 5 6 7 8 9 10 11 22 55 14 15 16 17 18 41 43 27 28
|
hdmapglem7b |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ∈ 𝐵 ) ) ∧ ( 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑙 ∈ 𝐵 ) ) → ( ( 𝑆 ‘ ( ( 𝑘 · 𝐸 ) + 𝑢 ) ) ‘ ( ( 𝑙 · 𝐸 ) + 𝑣 ) ) = ( ( 𝑙 × ( 𝐺 ‘ 𝑘 ) ) ✚ ( ( 𝑆 ‘ 𝑢 ) ‘ 𝑣 ) ) ) |
| 59 |
54 57 58
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ∈ 𝐵 ) ) ∧ ( 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑙 ∈ 𝐵 ) ) → ( 𝐺 ‘ ( ( 𝑆 ‘ ( ( 𝑙 · 𝐸 ) + 𝑣 ) ) ‘ ( ( 𝑘 · 𝐸 ) + 𝑢 ) ) ) = ( ( 𝑆 ‘ ( ( 𝑘 · 𝐸 ) + 𝑢 ) ) ‘ ( ( 𝑙 · 𝐸 ) + 𝑣 ) ) ) |
| 60 |
59
|
3adantl3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑋 = ( ( 𝑘 · 𝐸 ) + 𝑢 ) ) ∧ ( 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑙 ∈ 𝐵 ) ) → ( 𝐺 ‘ ( ( 𝑆 ‘ ( ( 𝑙 · 𝐸 ) + 𝑣 ) ) ‘ ( ( 𝑘 · 𝐸 ) + 𝑢 ) ) ) = ( ( 𝑆 ‘ ( ( 𝑘 · 𝐸 ) + 𝑢 ) ) ‘ ( ( 𝑙 · 𝐸 ) + 𝑣 ) ) ) |
| 61 |
60
|
3adant3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑋 = ( ( 𝑘 · 𝐸 ) + 𝑢 ) ) ∧ ( 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑙 ∈ 𝐵 ) ∧ 𝑌 = ( ( 𝑙 · 𝐸 ) + 𝑣 ) ) → ( 𝐺 ‘ ( ( 𝑆 ‘ ( ( 𝑙 · 𝐸 ) + 𝑣 ) ) ‘ ( ( 𝑘 · 𝐸 ) + 𝑢 ) ) ) = ( ( 𝑆 ‘ ( ( 𝑘 · 𝐸 ) + 𝑢 ) ) ‘ ( ( 𝑙 · 𝐸 ) + 𝑣 ) ) ) |
| 62 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑋 = ( ( 𝑘 · 𝐸 ) + 𝑢 ) ) ∧ ( 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑙 ∈ 𝐵 ) ∧ 𝑌 = ( ( 𝑙 · 𝐸 ) + 𝑣 ) ) → 𝑌 = ( ( 𝑙 · 𝐸 ) + 𝑣 ) ) |
| 63 |
62
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑋 = ( ( 𝑘 · 𝐸 ) + 𝑢 ) ) ∧ ( 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑙 ∈ 𝐵 ) ∧ 𝑌 = ( ( 𝑙 · 𝐸 ) + 𝑣 ) ) → ( 𝑆 ‘ 𝑌 ) = ( 𝑆 ‘ ( ( 𝑙 · 𝐸 ) + 𝑣 ) ) ) |
| 64 |
|
simp13 |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑋 = ( ( 𝑘 · 𝐸 ) + 𝑢 ) ) ∧ ( 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑙 ∈ 𝐵 ) ∧ 𝑌 = ( ( 𝑙 · 𝐸 ) + 𝑣 ) ) → 𝑋 = ( ( 𝑘 · 𝐸 ) + 𝑢 ) ) |
| 65 |
63 64
|
fveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑋 = ( ( 𝑘 · 𝐸 ) + 𝑢 ) ) ∧ ( 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑙 ∈ 𝐵 ) ∧ 𝑌 = ( ( 𝑙 · 𝐸 ) + 𝑣 ) ) → ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) = ( ( 𝑆 ‘ ( ( 𝑙 · 𝐸 ) + 𝑣 ) ) ‘ ( ( 𝑘 · 𝐸 ) + 𝑢 ) ) ) |
| 66 |
65
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑋 = ( ( 𝑘 · 𝐸 ) + 𝑢 ) ) ∧ ( 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑙 ∈ 𝐵 ) ∧ 𝑌 = ( ( 𝑙 · 𝐸 ) + 𝑣 ) ) → ( 𝐺 ‘ ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) ) = ( 𝐺 ‘ ( ( 𝑆 ‘ ( ( 𝑙 · 𝐸 ) + 𝑣 ) ) ‘ ( ( 𝑘 · 𝐸 ) + 𝑢 ) ) ) ) |
| 67 |
64
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑋 = ( ( 𝑘 · 𝐸 ) + 𝑢 ) ) ∧ ( 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑙 ∈ 𝐵 ) ∧ 𝑌 = ( ( 𝑙 · 𝐸 ) + 𝑣 ) ) → ( 𝑆 ‘ 𝑋 ) = ( 𝑆 ‘ ( ( 𝑘 · 𝐸 ) + 𝑢 ) ) ) |
| 68 |
67 62
|
fveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑋 = ( ( 𝑘 · 𝐸 ) + 𝑢 ) ) ∧ ( 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑙 ∈ 𝐵 ) ∧ 𝑌 = ( ( 𝑙 · 𝐸 ) + 𝑣 ) ) → ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑌 ) = ( ( 𝑆 ‘ ( ( 𝑘 · 𝐸 ) + 𝑢 ) ) ‘ ( ( 𝑙 · 𝐸 ) + 𝑣 ) ) ) |
| 69 |
61 66 68
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑋 = ( ( 𝑘 · 𝐸 ) + 𝑢 ) ) ∧ ( 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑙 ∈ 𝐵 ) ∧ 𝑌 = ( ( 𝑙 · 𝐸 ) + 𝑣 ) ) → ( 𝐺 ‘ ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) ) = ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑌 ) ) |
| 70 |
69
|
3exp |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑋 = ( ( 𝑘 · 𝐸 ) + 𝑢 ) ) → ( ( 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑙 ∈ 𝐵 ) → ( 𝑌 = ( ( 𝑙 · 𝐸 ) + 𝑣 ) → ( 𝐺 ‘ ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) ) = ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑌 ) ) ) ) |
| 71 |
70
|
rexlimdvv |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑋 = ( ( 𝑘 · 𝐸 ) + 𝑢 ) ) → ( ∃ 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∃ 𝑙 ∈ 𝐵 𝑌 = ( ( 𝑙 · 𝐸 ) + 𝑣 ) → ( 𝐺 ‘ ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) ) = ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑌 ) ) ) |
| 72 |
71
|
3exp |
⊢ ( 𝜑 → ( ( 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ∈ 𝐵 ) → ( 𝑋 = ( ( 𝑘 · 𝐸 ) + 𝑢 ) → ( ∃ 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∃ 𝑙 ∈ 𝐵 𝑌 = ( ( 𝑙 · 𝐸 ) + 𝑣 ) → ( 𝐺 ‘ ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) ) = ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑌 ) ) ) ) ) |
| 73 |
72
|
rexlimdvv |
⊢ ( 𝜑 → ( ∃ 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∃ 𝑘 ∈ 𝐵 𝑋 = ( ( 𝑘 · 𝐸 ) + 𝑢 ) → ( ∃ 𝑣 ∈ ( 𝑂 ‘ { 𝐸 } ) ∃ 𝑙 ∈ 𝐵 𝑌 = ( ( 𝑙 · 𝐸 ) + 𝑣 ) → ( 𝐺 ‘ ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) ) = ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑌 ) ) ) ) |
| 74 |
20 21 73
|
mp2d |
⊢ ( 𝜑 → ( 𝐺 ‘ ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) ) = ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑌 ) ) |