| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmapinvlem1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
hdmapinvlem1.e |
⊢ 𝐸 = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 |
| 3 |
|
hdmapinvlem1.o |
⊢ 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
hdmapinvlem1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
hdmapinvlem1.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 6 |
|
hdmapinvlem1.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
| 7 |
|
hdmapinvlem1.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 8 |
|
hdmapinvlem1.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 9 |
|
hdmapinvlem1.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 10 |
|
hdmapinvlem1.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
| 11 |
|
hdmapinvlem1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 12 |
|
hdmapinvlem1.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝑂 ‘ { 𝐸 } ) ) |
| 13 |
|
eqid |
⊢ ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 ) |
| 14 |
|
eqid |
⊢ ( LKer ‘ 𝑈 ) = ( LKer ‘ 𝑈 ) |
| 15 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 16 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 17 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
| 18 |
1 15 16 4 5 17 2 11
|
dvheveccl |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑈 ) } ) ) |
| 19 |
18
|
eldifad |
⊢ ( 𝜑 → 𝐸 ∈ 𝑉 ) |
| 20 |
1 3 4 5 13 14 10 11 19
|
hdmaplkr |
⊢ ( 𝜑 → ( ( LKer ‘ 𝑈 ) ‘ ( 𝑆 ‘ 𝐸 ) ) = ( 𝑂 ‘ { 𝐸 } ) ) |
| 21 |
12 20
|
eleqtrrd |
⊢ ( 𝜑 → 𝐶 ∈ ( ( LKer ‘ 𝑈 ) ‘ ( 𝑆 ‘ 𝐸 ) ) ) |
| 22 |
1 4 11
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 23 |
|
eqid |
⊢ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
| 24 |
|
eqid |
⊢ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 25 |
1 4 5 23 24 10 11 19
|
hdmapcl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐸 ) ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 26 |
1 23 24 4 13 11 25
|
lcdvbaselfl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐸 ) ∈ ( LFnl ‘ 𝑈 ) ) |
| 27 |
19
|
snssd |
⊢ ( 𝜑 → { 𝐸 } ⊆ 𝑉 ) |
| 28 |
1 4 5 3
|
dochssv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ { 𝐸 } ⊆ 𝑉 ) → ( 𝑂 ‘ { 𝐸 } ) ⊆ 𝑉 ) |
| 29 |
11 27 28
|
syl2anc |
⊢ ( 𝜑 → ( 𝑂 ‘ { 𝐸 } ) ⊆ 𝑉 ) |
| 30 |
29 12
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
| 31 |
5 6 9 13 14 22 26 30
|
ellkr2 |
⊢ ( 𝜑 → ( 𝐶 ∈ ( ( LKer ‘ 𝑈 ) ‘ ( 𝑆 ‘ 𝐸 ) ) ↔ ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐶 ) = 0 ) ) |
| 32 |
21 31
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐶 ) = 0 ) |