| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmapinvlem1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
hdmapinvlem1.e |
⊢ 𝐸 = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 |
| 3 |
|
hdmapinvlem1.o |
⊢ 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
hdmapinvlem1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
hdmapinvlem1.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 6 |
|
hdmapinvlem1.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
| 7 |
|
hdmapinvlem1.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 8 |
|
hdmapinvlem1.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 9 |
|
hdmapinvlem1.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 10 |
|
hdmapinvlem1.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
| 11 |
|
hdmapinvlem1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 12 |
|
hdmapinvlem1.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝑂 ‘ { 𝐸 } ) ) |
| 13 |
1 2 3 4 5 6 7 8 9 10 11 12
|
hdmapinvlem1 |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐶 ) = 0 ) |
| 14 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 15 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 16 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
| 17 |
1 14 15 4 5 16 2 11
|
dvheveccl |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑈 ) } ) ) |
| 18 |
17
|
eldifad |
⊢ ( 𝜑 → 𝐸 ∈ 𝑉 ) |
| 19 |
18
|
snssd |
⊢ ( 𝜑 → { 𝐸 } ⊆ 𝑉 ) |
| 20 |
1 4 5 3
|
dochssv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ { 𝐸 } ⊆ 𝑉 ) → ( 𝑂 ‘ { 𝐸 } ) ⊆ 𝑉 ) |
| 21 |
11 19 20
|
syl2anc |
⊢ ( 𝜑 → ( 𝑂 ‘ { 𝐸 } ) ⊆ 𝑉 ) |
| 22 |
21 12
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
| 23 |
1 4 5 6 9 10 11 18 22
|
hdmapip0com |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐶 ) = 0 ↔ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐸 ) = 0 ) ) |
| 24 |
13 23
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐸 ) = 0 ) |