| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmapip0.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
hdmapip0.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
hdmapip0.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 4 |
|
hdmapip0.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
| 5 |
|
hdmapip0.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
| 6 |
|
hdmapip0.z |
⊢ 𝑍 = ( 0g ‘ 𝑅 ) |
| 7 |
|
hdmapip0.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
|
hdmapip0.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 9 |
|
hdmapip0.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 10 |
|
eqid |
⊢ ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 11 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 12 |
9
|
anim1i |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) |
| 13 |
|
eldifsn |
⊢ ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ↔ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) |
| 14 |
12 13
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 15 |
1 10 2 3 4 11 14
|
dochnel |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → ¬ 𝑋 ∈ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝑋 } ) ) |
| 16 |
|
eqid |
⊢ ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 ) |
| 17 |
|
eqid |
⊢ ( LKer ‘ 𝑈 ) = ( LKer ‘ 𝑈 ) |
| 18 |
1 2 8
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 19 |
|
eqid |
⊢ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
| 20 |
|
eqid |
⊢ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 21 |
1 2 3 19 20 7 8 9
|
hdmapcl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑋 ) ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 22 |
1 19 20 2 16 8 21
|
lcdvbaselfl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑋 ) ∈ ( LFnl ‘ 𝑈 ) ) |
| 23 |
3 5 6 16 17 18 22 9
|
ellkr2 |
⊢ ( 𝜑 → ( 𝑋 ∈ ( ( LKer ‘ 𝑈 ) ‘ ( 𝑆 ‘ 𝑋 ) ) ↔ ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 ) = 𝑍 ) ) |
| 24 |
23
|
biimpar |
⊢ ( ( 𝜑 ∧ ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 ) = 𝑍 ) → 𝑋 ∈ ( ( LKer ‘ 𝑈 ) ‘ ( 𝑆 ‘ 𝑋 ) ) ) |
| 25 |
1 10 2 3 16 17 7 8 9
|
hdmaplkr |
⊢ ( 𝜑 → ( ( LKer ‘ 𝑈 ) ‘ ( 𝑆 ‘ 𝑋 ) ) = ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝑋 } ) ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 ) = 𝑍 ) → ( ( LKer ‘ 𝑈 ) ‘ ( 𝑆 ‘ 𝑋 ) ) = ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝑋 } ) ) |
| 27 |
24 26
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 ) = 𝑍 ) → 𝑋 ∈ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝑋 } ) ) |
| 28 |
27
|
ex |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 ) = 𝑍 → 𝑋 ∈ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝑋 } ) ) ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → ( ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 ) = 𝑍 → 𝑋 ∈ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝑋 } ) ) ) |
| 30 |
15 29
|
mtod |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → ¬ ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 ) = 𝑍 ) |
| 31 |
30
|
neqned |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 ) ≠ 𝑍 ) |
| 32 |
31
|
ex |
⊢ ( 𝜑 → ( 𝑋 ≠ 0 → ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 ) ≠ 𝑍 ) ) |
| 33 |
32
|
necon4d |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 ) = 𝑍 → 𝑋 = 0 ) ) |
| 34 |
33
|
imp |
⊢ ( ( 𝜑 ∧ ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 ) = 𝑍 ) → 𝑋 = 0 ) |
| 35 |
|
fveq2 |
⊢ ( 𝑋 = 0 → ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 ) = ( ( 𝑆 ‘ 𝑋 ) ‘ 0 ) ) |
| 36 |
5 6 4 16
|
lfl0 |
⊢ ( ( 𝑈 ∈ LMod ∧ ( 𝑆 ‘ 𝑋 ) ∈ ( LFnl ‘ 𝑈 ) ) → ( ( 𝑆 ‘ 𝑋 ) ‘ 0 ) = 𝑍 ) |
| 37 |
18 22 36
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑋 ) ‘ 0 ) = 𝑍 ) |
| 38 |
35 37
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 ) = 𝑍 ) |
| 39 |
34 38
|
impbida |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 ) = 𝑍 ↔ 𝑋 = 0 ) ) |