| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmaplkr.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
hdmaplkr.o |
⊢ 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
hdmaplkr.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
hdmaplkr.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 5 |
|
hdmaplkr.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
| 6 |
|
hdmaplkr.y |
⊢ 𝑌 = ( LKer ‘ 𝑈 ) |
| 7 |
|
hdmaplkr.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
|
hdmaplkr.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 9 |
|
hdmaplkr.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 10 |
|
fveq2 |
⊢ ( 𝑋 = ( 0g ‘ 𝑈 ) → ( 𝑆 ‘ 𝑋 ) = ( 𝑆 ‘ ( 0g ‘ 𝑈 ) ) ) |
| 11 |
10
|
fveq2d |
⊢ ( 𝑋 = ( 0g ‘ 𝑈 ) → ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) = ( 𝑌 ‘ ( 𝑆 ‘ ( 0g ‘ 𝑈 ) ) ) ) |
| 12 |
|
sneq |
⊢ ( 𝑋 = ( 0g ‘ 𝑈 ) → { 𝑋 } = { ( 0g ‘ 𝑈 ) } ) |
| 13 |
12
|
fveq2d |
⊢ ( 𝑋 = ( 0g ‘ 𝑈 ) → ( 𝑂 ‘ { 𝑋 } ) = ( 𝑂 ‘ { ( 0g ‘ 𝑈 ) } ) ) |
| 14 |
11 13
|
sseq12d |
⊢ ( 𝑋 = ( 0g ‘ 𝑈 ) → ( ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) ⊆ ( 𝑂 ‘ { 𝑋 } ) ↔ ( 𝑌 ‘ ( 𝑆 ‘ ( 0g ‘ 𝑈 ) ) ) ⊆ ( 𝑂 ‘ { ( 0g ‘ 𝑈 ) } ) ) ) |
| 15 |
|
eqid |
⊢ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
| 16 |
1 15 8
|
lcdlmod |
⊢ ( 𝜑 → ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ∈ LMod ) |
| 17 |
|
eqid |
⊢ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 18 |
1 3 4 15 17 7 8 9
|
hdmapcl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑋 ) ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 19 |
|
eqid |
⊢ ( LSpan ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LSpan ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 20 |
17 19
|
lspsnid |
⊢ ( ( ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ∈ LMod ∧ ( 𝑆 ‘ 𝑋 ) ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( 𝑆 ‘ 𝑋 ) ∈ ( ( LSpan ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { ( 𝑆 ‘ 𝑋 ) } ) ) |
| 21 |
16 18 20
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑋 ) ∈ ( ( LSpan ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { ( 𝑆 ‘ 𝑋 ) } ) ) |
| 22 |
|
eqid |
⊢ ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 ) |
| 23 |
|
eqid |
⊢ ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
| 24 |
1 3 4 22 15 19 23 7 8 9
|
hdmap10 |
⊢ ( 𝜑 → ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) = ( ( LSpan ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { ( 𝑆 ‘ 𝑋 ) } ) ) |
| 25 |
|
eqid |
⊢ ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 ) |
| 26 |
1 2 23 3 4 22 25 6 8 9
|
mapdsn |
⊢ ( 𝜑 → ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝑌 ‘ 𝑓 ) } ) |
| 27 |
24 26
|
eqtr3d |
⊢ ( 𝜑 → ( ( LSpan ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { ( 𝑆 ‘ 𝑋 ) } ) = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝑌 ‘ 𝑓 ) } ) |
| 28 |
21 27
|
eleqtrd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑋 ) ∈ { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝑌 ‘ 𝑓 ) } ) |
| 29 |
1 15 17 3 25 8 18
|
lcdvbaselfl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑋 ) ∈ ( LFnl ‘ 𝑈 ) ) |
| 30 |
|
fveq2 |
⊢ ( 𝑓 = ( 𝑆 ‘ 𝑋 ) → ( 𝑌 ‘ 𝑓 ) = ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) ) |
| 31 |
30
|
sseq2d |
⊢ ( 𝑓 = ( 𝑆 ‘ 𝑋 ) → ( ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝑌 ‘ 𝑓 ) ↔ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) ) ) |
| 32 |
31
|
elrab3 |
⊢ ( ( 𝑆 ‘ 𝑋 ) ∈ ( LFnl ‘ 𝑈 ) → ( ( 𝑆 ‘ 𝑋 ) ∈ { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝑌 ‘ 𝑓 ) } ↔ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) ) ) |
| 33 |
29 32
|
syl |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑋 ) ∈ { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝑌 ‘ 𝑓 ) } ↔ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) ) ) |
| 34 |
28 33
|
mpbid |
⊢ ( 𝜑 → ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) ) |
| 36 |
|
eqid |
⊢ ( LSHyp ‘ 𝑈 ) = ( LSHyp ‘ 𝑈 ) |
| 37 |
1 3 8
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → 𝑈 ∈ LVec ) |
| 39 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
| 40 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 41 |
9
|
anim1i |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) ) |
| 42 |
|
eldifsn |
⊢ ( 𝑋 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑈 ) } ) ↔ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) ) |
| 43 |
41 42
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → 𝑋 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑈 ) } ) ) |
| 44 |
1 2 3 4 39 36 40 43
|
dochsnshp |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝑂 ‘ { 𝑋 } ) ∈ ( LSHyp ‘ 𝑈 ) ) |
| 45 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝑆 ‘ 𝑋 ) ∈ ( LFnl ‘ 𝑈 ) ) |
| 46 |
|
eqid |
⊢ ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) |
| 47 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) |
| 48 |
|
eqid |
⊢ ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 49 |
1 3 4 46 47 15 48 8
|
lcd0v |
⊢ ( 𝜑 → ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) |
| 50 |
49
|
eqeq2d |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑋 ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ↔ ( 𝑆 ‘ 𝑋 ) = ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ) |
| 51 |
1 3 4 39 15 48 7 8 9
|
hdmapeq0 |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑋 ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ↔ 𝑋 = ( 0g ‘ 𝑈 ) ) ) |
| 52 |
50 51
|
bitr3d |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑋 ) = ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ↔ 𝑋 = ( 0g ‘ 𝑈 ) ) ) |
| 53 |
52
|
necon3bid |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑋 ) ≠ ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ↔ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) ) |
| 54 |
53
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝑆 ‘ 𝑋 ) ≠ ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) |
| 55 |
4 46 47 36 25 6
|
lkrshp |
⊢ ( ( 𝑈 ∈ LVec ∧ ( 𝑆 ‘ 𝑋 ) ∈ ( LFnl ‘ 𝑈 ) ∧ ( 𝑆 ‘ 𝑋 ) ≠ ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) → ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) |
| 56 |
38 45 54 55
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) |
| 57 |
36 38 44 56
|
lshpcmp |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → ( ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) ↔ ( 𝑂 ‘ { 𝑋 } ) = ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) ) ) |
| 58 |
35 57
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝑂 ‘ { 𝑋 } ) = ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) ) |
| 59 |
|
eqimss2 |
⊢ ( ( 𝑂 ‘ { 𝑋 } ) = ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) → ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) ⊆ ( 𝑂 ‘ { 𝑋 } ) ) |
| 60 |
58 59
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) ⊆ ( 𝑂 ‘ { 𝑋 } ) ) |
| 61 |
1 3 8
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 62 |
4 39
|
lmod0vcl |
⊢ ( 𝑈 ∈ LMod → ( 0g ‘ 𝑈 ) ∈ 𝑉 ) |
| 63 |
61 62
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑈 ) ∈ 𝑉 ) |
| 64 |
1 3 4 15 17 7 8 63
|
hdmapcl |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 0g ‘ 𝑈 ) ) ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 65 |
1 15 17 3 25 8 64
|
lcdvbaselfl |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 0g ‘ 𝑈 ) ) ∈ ( LFnl ‘ 𝑈 ) ) |
| 66 |
4 25 6 61 65
|
lkrssv |
⊢ ( 𝜑 → ( 𝑌 ‘ ( 𝑆 ‘ ( 0g ‘ 𝑈 ) ) ) ⊆ 𝑉 ) |
| 67 |
1 3 2 4 39
|
doch0 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑂 ‘ { ( 0g ‘ 𝑈 ) } ) = 𝑉 ) |
| 68 |
8 67
|
syl |
⊢ ( 𝜑 → ( 𝑂 ‘ { ( 0g ‘ 𝑈 ) } ) = 𝑉 ) |
| 69 |
66 68
|
sseqtrrd |
⊢ ( 𝜑 → ( 𝑌 ‘ ( 𝑆 ‘ ( 0g ‘ 𝑈 ) ) ) ⊆ ( 𝑂 ‘ { ( 0g ‘ 𝑈 ) } ) ) |
| 70 |
14 60 69
|
pm2.61ne |
⊢ ( 𝜑 → ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) ⊆ ( 𝑂 ‘ { 𝑋 } ) ) |
| 71 |
70 34
|
eqssd |
⊢ ( 𝜑 → ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) = ( 𝑂 ‘ { 𝑋 } ) ) |