| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmapoc.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
hdmapoc.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
hdmapoc.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 4 |
|
hdmapoc.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
| 5 |
|
hdmapoc.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 6 |
|
hdmapoc.o |
⊢ 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 7 |
|
hdmapoc.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
|
hdmapoc.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 9 |
|
hdmapoc.x |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑉 ) |
| 10 |
1 2 3 6
|
dochssv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( 𝑂 ‘ 𝑋 ) ⊆ 𝑉 ) |
| 11 |
8 9 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑋 ) ⊆ 𝑉 ) |
| 12 |
11
|
sseld |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑂 ‘ 𝑋 ) → 𝑦 ∈ 𝑉 ) ) |
| 13 |
12
|
pm4.71rd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑂 ‘ 𝑋 ) ↔ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ∈ ( 𝑂 ‘ 𝑋 ) ) ) ) |
| 14 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
| 15 |
|
eqid |
⊢ ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 ) |
| 16 |
1 2 8
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → 𝑈 ∈ LMod ) |
| 18 |
1 2 3 14 6
|
dochlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( 𝑂 ‘ 𝑋 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 19 |
8 9 18
|
syl2anc |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑋 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑂 ‘ 𝑋 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 21 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → 𝑦 ∈ 𝑉 ) |
| 22 |
3 14 15 17 20 21
|
ellspsn5b |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑦 ∈ ( 𝑂 ‘ 𝑋 ) ↔ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑦 } ) ⊆ ( 𝑂 ‘ 𝑋 ) ) ) |
| 23 |
|
eqid |
⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 24 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 25 |
1 2 3 15 23
|
dihlsprn |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑦 ∈ 𝑉 ) → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑦 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 26 |
24 21 25
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑦 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 27 |
1 23 2 3 6
|
dochcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( 𝑂 ‘ 𝑋 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 28 |
8 9 27
|
syl2anc |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑋 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑂 ‘ 𝑋 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 30 |
1 23 6 24 26 29
|
dochord |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( ( ( LSpan ‘ 𝑈 ) ‘ { 𝑦 } ) ⊆ ( 𝑂 ‘ 𝑋 ) ↔ ( 𝑂 ‘ ( 𝑂 ‘ 𝑋 ) ) ⊆ ( 𝑂 ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑦 } ) ) ) ) |
| 31 |
21
|
snssd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → { 𝑦 } ⊆ 𝑉 ) |
| 32 |
1 2 6 3 15 24 31
|
dochocsp |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑂 ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑦 } ) ) = ( 𝑂 ‘ { 𝑦 } ) ) |
| 33 |
32
|
sseq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( ( 𝑂 ‘ ( 𝑂 ‘ 𝑋 ) ) ⊆ ( 𝑂 ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑦 } ) ) ↔ ( 𝑂 ‘ ( 𝑂 ‘ 𝑋 ) ) ⊆ ( 𝑂 ‘ { 𝑦 } ) ) ) |
| 34 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → 𝑋 ⊆ 𝑉 ) |
| 35 |
1 23 2 3 6
|
dochcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ { 𝑦 } ⊆ 𝑉 ) → ( 𝑂 ‘ { 𝑦 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 36 |
24 31 35
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑂 ‘ { 𝑦 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 37 |
1 2 3 23 6 24 34 36
|
dochsscl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑋 ⊆ ( 𝑂 ‘ { 𝑦 } ) ↔ ( 𝑂 ‘ ( 𝑂 ‘ 𝑋 ) ) ⊆ ( 𝑂 ‘ { 𝑦 } ) ) ) |
| 38 |
33 37
|
bitr4d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( ( 𝑂 ‘ ( 𝑂 ‘ 𝑋 ) ) ⊆ ( 𝑂 ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑦 } ) ) ↔ 𝑋 ⊆ ( 𝑂 ‘ { 𝑦 } ) ) ) |
| 39 |
22 30 38
|
3bitrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑦 ∈ ( 𝑂 ‘ 𝑋 ) ↔ 𝑋 ⊆ ( 𝑂 ‘ { 𝑦 } ) ) ) |
| 40 |
|
dfss3 |
⊢ ( 𝑋 ⊆ ( 𝑂 ‘ { 𝑦 } ) ↔ ∀ 𝑧 ∈ 𝑋 𝑧 ∈ ( 𝑂 ‘ { 𝑦 } ) ) |
| 41 |
39 40
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑦 ∈ ( 𝑂 ‘ 𝑋 ) ↔ ∀ 𝑧 ∈ 𝑋 𝑧 ∈ ( 𝑂 ‘ { 𝑦 } ) ) ) |
| 42 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 43 |
34
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) ∧ 𝑧 ∈ 𝑋 ) → 𝑧 ∈ 𝑉 ) |
| 44 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) ∧ 𝑧 ∈ 𝑋 ) → 𝑦 ∈ 𝑉 ) |
| 45 |
1 6 2 3 4 5 7 42 43 44
|
hdmapellkr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) ∧ 𝑧 ∈ 𝑋 ) → ( ( ( 𝑆 ‘ 𝑧 ) ‘ 𝑦 ) = 0 ↔ 𝑦 ∈ ( 𝑂 ‘ { 𝑧 } ) ) ) |
| 46 |
1 6 2 3 42 44 43
|
dochsncom |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 ∈ ( 𝑂 ‘ { 𝑧 } ) ↔ 𝑧 ∈ ( 𝑂 ‘ { 𝑦 } ) ) ) |
| 47 |
45 46
|
bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) ∧ 𝑧 ∈ 𝑋 ) → ( ( ( 𝑆 ‘ 𝑧 ) ‘ 𝑦 ) = 0 ↔ 𝑧 ∈ ( 𝑂 ‘ { 𝑦 } ) ) ) |
| 48 |
47
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( ∀ 𝑧 ∈ 𝑋 ( ( 𝑆 ‘ 𝑧 ) ‘ 𝑦 ) = 0 ↔ ∀ 𝑧 ∈ 𝑋 𝑧 ∈ ( 𝑂 ‘ { 𝑦 } ) ) ) |
| 49 |
41 48
|
bitr4d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑦 ∈ ( 𝑂 ‘ 𝑋 ) ↔ ∀ 𝑧 ∈ 𝑋 ( ( 𝑆 ‘ 𝑧 ) ‘ 𝑦 ) = 0 ) ) |
| 50 |
49
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝑉 ∧ 𝑦 ∈ ( 𝑂 ‘ 𝑋 ) ) ↔ ( 𝑦 ∈ 𝑉 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑆 ‘ 𝑧 ) ‘ 𝑦 ) = 0 ) ) ) |
| 51 |
13 50
|
bitrd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑂 ‘ 𝑋 ) ↔ ( 𝑦 ∈ 𝑉 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑆 ‘ 𝑧 ) ‘ 𝑦 ) = 0 ) ) ) |
| 52 |
51
|
eqabdv |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑋 ) = { 𝑦 ∣ ( 𝑦 ∈ 𝑉 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑆 ‘ 𝑧 ) ‘ 𝑦 ) = 0 ) } ) |
| 53 |
|
df-rab |
⊢ { 𝑦 ∈ 𝑉 ∣ ∀ 𝑧 ∈ 𝑋 ( ( 𝑆 ‘ 𝑧 ) ‘ 𝑦 ) = 0 } = { 𝑦 ∣ ( 𝑦 ∈ 𝑉 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑆 ‘ 𝑧 ) ‘ 𝑦 ) = 0 ) } |
| 54 |
52 53
|
eqtr4di |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑋 ) = { 𝑦 ∈ 𝑉 ∣ ∀ 𝑧 ∈ 𝑋 ( ( 𝑆 ‘ 𝑧 ) ‘ 𝑦 ) = 0 } ) |