Step |
Hyp |
Ref |
Expression |
1 |
|
hdmapval3.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmapval3.e |
⊢ 𝐸 = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 |
3 |
|
hdmapval3.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
hdmapval3.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
hdmapval3.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
6 |
|
hdmapval3.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
hdmapval3.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
8 |
|
hdmapval3.j |
⊢ 𝐽 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
hdmapval3.i |
⊢ 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
hdmapval3.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
hdmapval3.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
|
hdmapval3.te |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑇 } ) ≠ ( 𝑁 ‘ { 𝐸 } ) ) |
13 |
|
hdmapval3lem.t |
⊢ ( 𝜑 → 𝑇 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑈 ) } ) ) |
14 |
|
hdmapval3lem.x |
⊢ ( 𝜑 → 𝑥 ∈ 𝑉 ) |
15 |
|
hdmapval3lem.xn |
⊢ ( 𝜑 → ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) |
16 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
17 |
|
eqid |
⊢ ( LSpan ‘ 𝐶 ) = ( LSpan ‘ 𝐶 ) |
18 |
|
eqid |
⊢ ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
19 |
|
eqid |
⊢ ( 0g ‘ 𝐶 ) = ( 0g ‘ 𝐶 ) |
20 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
21 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
22 |
1 20 21 3 4 16 2 11
|
dvheveccl |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑈 ) } ) ) |
23 |
1 3 4 16 6 7 19 8 11 22
|
hvmapcl2 |
⊢ ( 𝜑 → ( 𝐽 ‘ 𝐸 ) ∈ ( 𝐷 ∖ { ( 0g ‘ 𝐶 ) } ) ) |
24 |
23
|
eldifad |
⊢ ( 𝜑 → ( 𝐽 ‘ 𝐸 ) ∈ 𝐷 ) |
25 |
1 3 4 16 5 6 17 18 8 11 22
|
mapdhvmap |
⊢ ( 𝜑 → ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑁 ‘ { 𝐸 } ) ) = ( ( LSpan ‘ 𝐶 ) ‘ { ( 𝐽 ‘ 𝐸 ) } ) ) |
26 |
1 3 11
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
27 |
22
|
eldifad |
⊢ ( 𝜑 → 𝐸 ∈ 𝑉 ) |
28 |
13
|
eldifad |
⊢ ( 𝜑 → 𝑇 ∈ 𝑉 ) |
29 |
4 5 26 14 27 28 15
|
lspindpi |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑥 } ) ≠ ( 𝑁 ‘ { 𝐸 } ) ∧ ( 𝑁 ‘ { 𝑥 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) ) ) |
30 |
29
|
simpld |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑥 } ) ≠ ( 𝑁 ‘ { 𝐸 } ) ) |
31 |
30
|
necomd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝐸 } ) ≠ ( 𝑁 ‘ { 𝑥 } ) ) |
32 |
1 3 4 16 5 6 7 17 18 9 11 24 25 31 22 14
|
hdmap1cl |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) ∈ 𝐷 ) |
33 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) = ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) ) |
34 |
|
eqid |
⊢ ( -g ‘ 𝑈 ) = ( -g ‘ 𝑈 ) |
35 |
|
eqid |
⊢ ( -g ‘ 𝐶 ) = ( -g ‘ 𝐶 ) |
36 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
37 |
1 3 11
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
38 |
4 36 5 37 27 28
|
lspprcl |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
39 |
16 36 37 38 14 15
|
lssneln0 |
⊢ ( 𝜑 → 𝑥 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑈 ) } ) ) |
40 |
1 3 4 34 16 5 6 7 35 17 18 9 11 22 24 39 32 31 25
|
hdmap1eq |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) = ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) ↔ ( ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑁 ‘ { 𝑥 } ) ) = ( ( LSpan ‘ 𝐶 ) ‘ { ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) } ) ∧ ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑁 ‘ { ( 𝐸 ( -g ‘ 𝑈 ) 𝑥 ) } ) ) = ( ( LSpan ‘ 𝐶 ) ‘ { ( ( 𝐽 ‘ 𝐸 ) ( -g ‘ 𝐶 ) ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) ) } ) ) ) ) |
41 |
33 40
|
mpbid |
⊢ ( 𝜑 → ( ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑁 ‘ { 𝑥 } ) ) = ( ( LSpan ‘ 𝐶 ) ‘ { ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) } ) ∧ ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑁 ‘ { ( 𝐸 ( -g ‘ 𝑈 ) 𝑥 ) } ) ) = ( ( LSpan ‘ 𝐶 ) ‘ { ( ( 𝐽 ‘ 𝐸 ) ( -g ‘ 𝐶 ) ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) ) } ) ) ) |
42 |
41
|
simpld |
⊢ ( 𝜑 → ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑁 ‘ { 𝑥 } ) ) = ( ( LSpan ‘ 𝐶 ) ‘ { ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) } ) ) |
43 |
12
|
necomd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝐸 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) ) |
44 |
4 5 37 27 28
|
lspprid1 |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) |
45 |
36 5 37 38 44
|
lspsnel5a |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝐸 } ) ⊆ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) |
46 |
45 45
|
unssd |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝐸 } ) ) ⊆ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) |
47 |
46 15
|
ssneldd |
⊢ ( 𝜑 → ¬ 𝑥 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝐸 } ) ) ) |
48 |
1 2 3 4 5 6 7 8 9 10 11 27 14 47
|
hdmapval2 |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐸 ) = ( 𝐼 ‘ 〈 𝑥 , ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) , 𝐸 〉 ) ) |
49 |
1 2 8 10 11
|
hdmapevec |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐸 ) = ( 𝐽 ‘ 𝐸 ) ) |
50 |
48 49
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑥 , ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) , 𝐸 〉 ) = ( 𝐽 ‘ 𝐸 ) ) |
51 |
4 5 37 27 28
|
lspprid2 |
⊢ ( 𝜑 → 𝑇 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) |
52 |
36 5 37 38 51
|
lspsnel5a |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑇 } ) ⊆ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) |
53 |
45 52
|
unssd |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) ⊆ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) |
54 |
53 15
|
ssneldd |
⊢ ( 𝜑 → ¬ 𝑥 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) ) |
55 |
1 2 3 4 5 6 7 8 9 10 11 28 14 54
|
hdmapval2 |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑇 ) = ( 𝐼 ‘ 〈 𝑥 , ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) , 𝑇 〉 ) ) |
56 |
55
|
eqcomd |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑥 , ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) , 𝑇 〉 ) = ( 𝑆 ‘ 𝑇 ) ) |
57 |
1 3 4 16 5 6 7 17 18 9 11 32 42 39 22 13 43 15 50 56
|
hdmap1eq4N |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑇 〉 ) = ( 𝑆 ‘ 𝑇 ) ) |
58 |
57
|
eqcomd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑇 ) = ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑇 〉 ) ) |