Metamath Proof Explorer


Theorem hdmapval3lemN

Description: Value of map from vectors to functionals at arguments not colinear with the reference vector E . (Contributed by NM, 17-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmapval3.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmapval3.e 𝐸 = ⟨ ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ⟩
hdmapval3.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmapval3.v 𝑉 = ( Base ‘ 𝑈 )
hdmapval3.n 𝑁 = ( LSpan ‘ 𝑈 )
hdmapval3.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
hdmapval3.d 𝐷 = ( Base ‘ 𝐶 )
hdmapval3.j 𝐽 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 )
hdmapval3.i 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 )
hdmapval3.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
hdmapval3.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmapval3.te ( 𝜑 → ( 𝑁 ‘ { 𝑇 } ) ≠ ( 𝑁 ‘ { 𝐸 } ) )
hdmapval3lem.t ( 𝜑𝑇 ∈ ( 𝑉 ∖ { ( 0g𝑈 ) } ) )
hdmapval3lem.x ( 𝜑𝑥𝑉 )
hdmapval3lem.xn ( 𝜑 → ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) )
Assertion hdmapval3lemN ( 𝜑 → ( 𝑆𝑇 ) = ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑇 ⟩ ) )

Proof

Step Hyp Ref Expression
1 hdmapval3.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmapval3.e 𝐸 = ⟨ ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ⟩
3 hdmapval3.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 hdmapval3.v 𝑉 = ( Base ‘ 𝑈 )
5 hdmapval3.n 𝑁 = ( LSpan ‘ 𝑈 )
6 hdmapval3.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
7 hdmapval3.d 𝐷 = ( Base ‘ 𝐶 )
8 hdmapval3.j 𝐽 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 )
9 hdmapval3.i 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 )
10 hdmapval3.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
11 hdmapval3.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
12 hdmapval3.te ( 𝜑 → ( 𝑁 ‘ { 𝑇 } ) ≠ ( 𝑁 ‘ { 𝐸 } ) )
13 hdmapval3lem.t ( 𝜑𝑇 ∈ ( 𝑉 ∖ { ( 0g𝑈 ) } ) )
14 hdmapval3lem.x ( 𝜑𝑥𝑉 )
15 hdmapval3lem.xn ( 𝜑 → ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) )
16 eqid ( 0g𝑈 ) = ( 0g𝑈 )
17 eqid ( LSpan ‘ 𝐶 ) = ( LSpan ‘ 𝐶 )
18 eqid ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
19 eqid ( 0g𝐶 ) = ( 0g𝐶 )
20 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
21 eqid ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
22 1 20 21 3 4 16 2 11 dvheveccl ( 𝜑𝐸 ∈ ( 𝑉 ∖ { ( 0g𝑈 ) } ) )
23 1 3 4 16 6 7 19 8 11 22 hvmapcl2 ( 𝜑 → ( 𝐽𝐸 ) ∈ ( 𝐷 ∖ { ( 0g𝐶 ) } ) )
24 23 eldifad ( 𝜑 → ( 𝐽𝐸 ) ∈ 𝐷 )
25 1 3 4 16 5 6 17 18 8 11 22 mapdhvmap ( 𝜑 → ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑁 ‘ { 𝐸 } ) ) = ( ( LSpan ‘ 𝐶 ) ‘ { ( 𝐽𝐸 ) } ) )
26 1 3 11 dvhlvec ( 𝜑𝑈 ∈ LVec )
27 22 eldifad ( 𝜑𝐸𝑉 )
28 13 eldifad ( 𝜑𝑇𝑉 )
29 4 5 26 14 27 28 15 lspindpi ( 𝜑 → ( ( 𝑁 ‘ { 𝑥 } ) ≠ ( 𝑁 ‘ { 𝐸 } ) ∧ ( 𝑁 ‘ { 𝑥 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) ) )
30 29 simpld ( 𝜑 → ( 𝑁 ‘ { 𝑥 } ) ≠ ( 𝑁 ‘ { 𝐸 } ) )
31 30 necomd ( 𝜑 → ( 𝑁 ‘ { 𝐸 } ) ≠ ( 𝑁 ‘ { 𝑥 } ) )
32 1 3 4 16 5 6 7 17 18 9 11 24 25 31 22 14 hdmap1cl ( 𝜑 → ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑥 ⟩ ) ∈ 𝐷 )
33 eqidd ( 𝜑 → ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑥 ⟩ ) = ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑥 ⟩ ) )
34 eqid ( -g𝑈 ) = ( -g𝑈 )
35 eqid ( -g𝐶 ) = ( -g𝐶 )
36 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
37 1 3 11 dvhlmod ( 𝜑𝑈 ∈ LMod )
38 4 36 5 37 27 28 lspprcl ( 𝜑 → ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ∈ ( LSubSp ‘ 𝑈 ) )
39 16 36 37 38 14 15 lssneln0 ( 𝜑𝑥 ∈ ( 𝑉 ∖ { ( 0g𝑈 ) } ) )
40 1 3 4 34 16 5 6 7 35 17 18 9 11 22 24 39 32 31 25 hdmap1eq ( 𝜑 → ( ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑥 ⟩ ) = ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑥 ⟩ ) ↔ ( ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑁 ‘ { 𝑥 } ) ) = ( ( LSpan ‘ 𝐶 ) ‘ { ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑥 ⟩ ) } ) ∧ ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑁 ‘ { ( 𝐸 ( -g𝑈 ) 𝑥 ) } ) ) = ( ( LSpan ‘ 𝐶 ) ‘ { ( ( 𝐽𝐸 ) ( -g𝐶 ) ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑥 ⟩ ) ) } ) ) ) )
41 33 40 mpbid ( 𝜑 → ( ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑁 ‘ { 𝑥 } ) ) = ( ( LSpan ‘ 𝐶 ) ‘ { ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑥 ⟩ ) } ) ∧ ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑁 ‘ { ( 𝐸 ( -g𝑈 ) 𝑥 ) } ) ) = ( ( LSpan ‘ 𝐶 ) ‘ { ( ( 𝐽𝐸 ) ( -g𝐶 ) ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑥 ⟩ ) ) } ) ) )
42 41 simpld ( 𝜑 → ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑁 ‘ { 𝑥 } ) ) = ( ( LSpan ‘ 𝐶 ) ‘ { ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑥 ⟩ ) } ) )
43 12 necomd ( 𝜑 → ( 𝑁 ‘ { 𝐸 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) )
44 4 5 37 27 28 lspprid1 ( 𝜑𝐸 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) )
45 36 5 37 38 44 lspsnel5a ( 𝜑 → ( 𝑁 ‘ { 𝐸 } ) ⊆ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) )
46 45 45 unssd ( 𝜑 → ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝐸 } ) ) ⊆ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) )
47 46 15 ssneldd ( 𝜑 → ¬ 𝑥 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝐸 } ) ) )
48 1 2 3 4 5 6 7 8 9 10 11 27 14 47 hdmapval2 ( 𝜑 → ( 𝑆𝐸 ) = ( 𝐼 ‘ ⟨ 𝑥 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑥 ⟩ ) , 𝐸 ⟩ ) )
49 1 2 8 10 11 hdmapevec ( 𝜑 → ( 𝑆𝐸 ) = ( 𝐽𝐸 ) )
50 48 49 eqtr3d ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑥 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑥 ⟩ ) , 𝐸 ⟩ ) = ( 𝐽𝐸 ) )
51 4 5 37 27 28 lspprid2 ( 𝜑𝑇 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) )
52 36 5 37 38 51 lspsnel5a ( 𝜑 → ( 𝑁 ‘ { 𝑇 } ) ⊆ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) )
53 45 52 unssd ( 𝜑 → ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) ⊆ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) )
54 53 15 ssneldd ( 𝜑 → ¬ 𝑥 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) )
55 1 2 3 4 5 6 7 8 9 10 11 28 14 54 hdmapval2 ( 𝜑 → ( 𝑆𝑇 ) = ( 𝐼 ‘ ⟨ 𝑥 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑥 ⟩ ) , 𝑇 ⟩ ) )
56 55 eqcomd ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑥 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑥 ⟩ ) , 𝑇 ⟩ ) = ( 𝑆𝑇 ) )
57 1 3 4 16 5 6 7 17 18 9 11 32 42 39 22 13 43 15 50 56 hdmap1eq4N ( 𝜑 → ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑇 ⟩ ) = ( 𝑆𝑇 ) )
58 57 eqcomd ( 𝜑 → ( 𝑆𝑇 ) = ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑇 ⟩ ) )