| Step |
Hyp |
Ref |
Expression |
| 1 |
|
heibor.1 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
| 2 |
1
|
heibor1 |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) → ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝐷 ∈ ( TotBnd ‘ 𝑋 ) ) ) |
| 3 |
|
cmetmet |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝐷 ∈ ( TotBnd ‘ 𝑋 ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 5 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 6 |
1
|
mopntop |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 7 |
3 5 6
|
3syl |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝐷 ∈ ( TotBnd ‘ 𝑋 ) ) → 𝐽 ∈ Top ) |
| 9 |
|
istotbnd |
⊢ ( 𝐷 ∈ ( TotBnd ‘ 𝑋 ) ↔ ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑟 ∈ ℝ+ ∃ 𝑢 ∈ Fin ( ∪ 𝑢 = 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) ) ) |
| 10 |
9
|
simprbi |
⊢ ( 𝐷 ∈ ( TotBnd ‘ 𝑋 ) → ∀ 𝑟 ∈ ℝ+ ∃ 𝑢 ∈ Fin ( ∪ 𝑢 = 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
| 11 |
|
2nn |
⊢ 2 ∈ ℕ |
| 12 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
| 13 |
11 12
|
mpan |
⊢ ( 𝑛 ∈ ℕ0 → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
| 14 |
13
|
nnrpd |
⊢ ( 𝑛 ∈ ℕ0 → ( 2 ↑ 𝑛 ) ∈ ℝ+ ) |
| 15 |
14
|
rpreccld |
⊢ ( 𝑛 ∈ ℕ0 → ( 1 / ( 2 ↑ 𝑛 ) ) ∈ ℝ+ ) |
| 16 |
|
oveq2 |
⊢ ( 𝑟 = ( 1 / ( 2 ↑ 𝑛 ) ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) |
| 17 |
16
|
eqeq2d |
⊢ ( 𝑟 = ( 1 / ( 2 ↑ 𝑛 ) ) → ( 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ↔ 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 18 |
17
|
rexbidv |
⊢ ( 𝑟 = ( 1 / ( 2 ↑ 𝑛 ) ) → ( ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ↔ ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 19 |
18
|
ralbidv |
⊢ ( 𝑟 = ( 1 / ( 2 ↑ 𝑛 ) ) → ( ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ↔ ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 20 |
19
|
anbi2d |
⊢ ( 𝑟 = ( 1 / ( 2 ↑ 𝑛 ) ) → ( ( ∪ 𝑢 = 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) ↔ ( ∪ 𝑢 = 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) |
| 21 |
20
|
rexbidv |
⊢ ( 𝑟 = ( 1 / ( 2 ↑ 𝑛 ) ) → ( ∃ 𝑢 ∈ Fin ( ∪ 𝑢 = 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) ↔ ∃ 𝑢 ∈ Fin ( ∪ 𝑢 = 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) |
| 22 |
21
|
rspccva |
⊢ ( ( ∀ 𝑟 ∈ ℝ+ ∃ 𝑢 ∈ Fin ( ∪ 𝑢 = 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) ∧ ( 1 / ( 2 ↑ 𝑛 ) ) ∈ ℝ+ ) → ∃ 𝑢 ∈ Fin ( ∪ 𝑢 = 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 23 |
10 15 22
|
syl2an |
⊢ ( ( 𝐷 ∈ ( TotBnd ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → ∃ 𝑢 ∈ Fin ( ∪ 𝑢 = 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 24 |
23
|
expcom |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝐷 ∈ ( TotBnd ‘ 𝑋 ) → ∃ 𝑢 ∈ Fin ( ∪ 𝑢 = 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) |
| 25 |
24
|
adantl |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐷 ∈ ( TotBnd ‘ 𝑋 ) → ∃ 𝑢 ∈ Fin ( ∪ 𝑢 = 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) |
| 26 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝑚 ‘ 𝑣 ) → ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) |
| 27 |
26
|
eqeq2d |
⊢ ( 𝑦 = ( 𝑚 ‘ 𝑣 ) → ( 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ↔ 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 28 |
27
|
ac6sfi |
⊢ ( ( 𝑢 ∈ Fin ∧ ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) → ∃ 𝑚 ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 29 |
28
|
adantrl |
⊢ ( ( 𝑢 ∈ Fin ∧ ( ∪ 𝑢 = 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → ∃ 𝑚 ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 30 |
29
|
adantl |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑢 ∈ Fin ∧ ( ∪ 𝑢 = 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) → ∃ 𝑚 ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 31 |
|
simp3l |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑢 ∈ Fin ∧ ∪ 𝑢 = 𝑋 ) ∧ ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → 𝑚 : 𝑢 ⟶ 𝑋 ) |
| 32 |
31
|
frnd |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑢 ∈ Fin ∧ ∪ 𝑢 = 𝑋 ) ∧ ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → ran 𝑚 ⊆ 𝑋 ) |
| 33 |
1
|
mopnuni |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 34 |
3 5 33
|
3syl |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑋 = ∪ 𝐽 ) |
| 36 |
35
|
3ad2ant1 |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑢 ∈ Fin ∧ ∪ 𝑢 = 𝑋 ) ∧ ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → 𝑋 = ∪ 𝐽 ) |
| 37 |
32 36
|
sseqtrd |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑢 ∈ Fin ∧ ∪ 𝑢 = 𝑋 ) ∧ ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → ran 𝑚 ⊆ ∪ 𝐽 ) |
| 38 |
1
|
fvexi |
⊢ 𝐽 ∈ V |
| 39 |
38
|
uniex |
⊢ ∪ 𝐽 ∈ V |
| 40 |
39
|
elpw2 |
⊢ ( ran 𝑚 ∈ 𝒫 ∪ 𝐽 ↔ ran 𝑚 ⊆ ∪ 𝐽 ) |
| 41 |
37 40
|
sylibr |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑢 ∈ Fin ∧ ∪ 𝑢 = 𝑋 ) ∧ ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → ran 𝑚 ∈ 𝒫 ∪ 𝐽 ) |
| 42 |
|
simp2l |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑢 ∈ Fin ∧ ∪ 𝑢 = 𝑋 ) ∧ ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → 𝑢 ∈ Fin ) |
| 43 |
|
ffn |
⊢ ( 𝑚 : 𝑢 ⟶ 𝑋 → 𝑚 Fn 𝑢 ) |
| 44 |
|
dffn4 |
⊢ ( 𝑚 Fn 𝑢 ↔ 𝑚 : 𝑢 –onto→ ran 𝑚 ) |
| 45 |
43 44
|
sylib |
⊢ ( 𝑚 : 𝑢 ⟶ 𝑋 → 𝑚 : 𝑢 –onto→ ran 𝑚 ) |
| 46 |
|
fofi |
⊢ ( ( 𝑢 ∈ Fin ∧ 𝑚 : 𝑢 –onto→ ran 𝑚 ) → ran 𝑚 ∈ Fin ) |
| 47 |
45 46
|
sylan2 |
⊢ ( ( 𝑢 ∈ Fin ∧ 𝑚 : 𝑢 ⟶ 𝑋 ) → ran 𝑚 ∈ Fin ) |
| 48 |
42 31 47
|
syl2anc |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑢 ∈ Fin ∧ ∪ 𝑢 = 𝑋 ) ∧ ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → ran 𝑚 ∈ Fin ) |
| 49 |
41 48
|
elind |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑢 ∈ Fin ∧ ∪ 𝑢 = 𝑋 ) ∧ ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → ran 𝑚 ∈ ( 𝒫 ∪ 𝐽 ∩ Fin ) ) |
| 50 |
26
|
eleq2d |
⊢ ( 𝑦 = ( 𝑚 ‘ 𝑣 ) → ( 𝑟 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ↔ 𝑟 ∈ ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 51 |
50
|
rexrn |
⊢ ( 𝑚 Fn 𝑢 → ( ∃ 𝑦 ∈ ran 𝑚 𝑟 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ↔ ∃ 𝑣 ∈ 𝑢 𝑟 ∈ ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 52 |
|
eliun |
⊢ ( 𝑟 ∈ ∪ 𝑦 ∈ ran 𝑚 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ↔ ∃ 𝑦 ∈ ran 𝑚 𝑟 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) |
| 53 |
|
eliun |
⊢ ( 𝑟 ∈ ∪ 𝑣 ∈ 𝑢 ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ↔ ∃ 𝑣 ∈ 𝑢 𝑟 ∈ ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) |
| 54 |
51 52 53
|
3bitr4g |
⊢ ( 𝑚 Fn 𝑢 → ( 𝑟 ∈ ∪ 𝑦 ∈ ran 𝑚 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ↔ 𝑟 ∈ ∪ 𝑣 ∈ 𝑢 ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 55 |
54
|
eqrdv |
⊢ ( 𝑚 Fn 𝑢 → ∪ 𝑦 ∈ ran 𝑚 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) = ∪ 𝑣 ∈ 𝑢 ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) |
| 56 |
31 43 55
|
3syl |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑢 ∈ Fin ∧ ∪ 𝑢 = 𝑋 ) ∧ ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → ∪ 𝑦 ∈ ran 𝑚 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) = ∪ 𝑣 ∈ 𝑢 ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) |
| 57 |
|
simp3r |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑢 ∈ Fin ∧ ∪ 𝑢 = 𝑋 ) ∧ ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) |
| 58 |
|
uniiun |
⊢ ∪ 𝑢 = ∪ 𝑣 ∈ 𝑢 𝑣 |
| 59 |
|
iuneq2 |
⊢ ( ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) → ∪ 𝑣 ∈ 𝑢 𝑣 = ∪ 𝑣 ∈ 𝑢 ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) |
| 60 |
58 59
|
eqtrid |
⊢ ( ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) → ∪ 𝑢 = ∪ 𝑣 ∈ 𝑢 ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) |
| 61 |
57 60
|
syl |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑢 ∈ Fin ∧ ∪ 𝑢 = 𝑋 ) ∧ ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → ∪ 𝑢 = ∪ 𝑣 ∈ 𝑢 ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) |
| 62 |
|
simp2r |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑢 ∈ Fin ∧ ∪ 𝑢 = 𝑋 ) ∧ ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → ∪ 𝑢 = 𝑋 ) |
| 63 |
56 61 62
|
3eqtr2rd |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑢 ∈ Fin ∧ ∪ 𝑢 = 𝑋 ) ∧ ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → 𝑋 = ∪ 𝑦 ∈ ran 𝑚 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) |
| 64 |
|
iuneq1 |
⊢ ( 𝑡 = ran 𝑚 → ∪ 𝑦 ∈ 𝑡 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) = ∪ 𝑦 ∈ ran 𝑚 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) |
| 65 |
64
|
rspceeqv |
⊢ ( ( ran 𝑚 ∈ ( 𝒫 ∪ 𝐽 ∩ Fin ) ∧ 𝑋 = ∪ 𝑦 ∈ ran 𝑚 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) → ∃ 𝑡 ∈ ( 𝒫 ∪ 𝐽 ∩ Fin ) 𝑋 = ∪ 𝑦 ∈ 𝑡 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) |
| 66 |
49 63 65
|
syl2anc |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑢 ∈ Fin ∧ ∪ 𝑢 = 𝑋 ) ∧ ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → ∃ 𝑡 ∈ ( 𝒫 ∪ 𝐽 ∩ Fin ) 𝑋 = ∪ 𝑦 ∈ 𝑡 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) |
| 67 |
66
|
3expia |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑢 ∈ Fin ∧ ∪ 𝑢 = 𝑋 ) ) → ( ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) → ∃ 𝑡 ∈ ( 𝒫 ∪ 𝐽 ∩ Fin ) 𝑋 = ∪ 𝑦 ∈ 𝑡 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 68 |
67
|
adantrrr |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑢 ∈ Fin ∧ ( ∪ 𝑢 = 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) → ( ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) → ∃ 𝑡 ∈ ( 𝒫 ∪ 𝐽 ∩ Fin ) 𝑋 = ∪ 𝑦 ∈ 𝑡 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 69 |
68
|
exlimdv |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑢 ∈ Fin ∧ ( ∪ 𝑢 = 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) → ( ∃ 𝑚 ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) → ∃ 𝑡 ∈ ( 𝒫 ∪ 𝐽 ∩ Fin ) 𝑋 = ∪ 𝑦 ∈ 𝑡 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 70 |
30 69
|
mpd |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑢 ∈ Fin ∧ ( ∪ 𝑢 = 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) → ∃ 𝑡 ∈ ( 𝒫 ∪ 𝐽 ∩ Fin ) 𝑋 = ∪ 𝑦 ∈ 𝑡 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) |
| 71 |
70
|
rexlimdvaa |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → ( ∃ 𝑢 ∈ Fin ( ∪ 𝑢 = 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) → ∃ 𝑡 ∈ ( 𝒫 ∪ 𝐽 ∩ Fin ) 𝑋 = ∪ 𝑦 ∈ 𝑡 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 72 |
25 71
|
syld |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐷 ∈ ( TotBnd ‘ 𝑋 ) → ∃ 𝑡 ∈ ( 𝒫 ∪ 𝐽 ∩ Fin ) 𝑋 = ∪ 𝑦 ∈ 𝑡 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 73 |
72
|
ralrimdva |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → ( 𝐷 ∈ ( TotBnd ‘ 𝑋 ) → ∀ 𝑛 ∈ ℕ0 ∃ 𝑡 ∈ ( 𝒫 ∪ 𝐽 ∩ Fin ) 𝑋 = ∪ 𝑦 ∈ 𝑡 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 74 |
39
|
pwex |
⊢ 𝒫 ∪ 𝐽 ∈ V |
| 75 |
74
|
inex1 |
⊢ ( 𝒫 ∪ 𝐽 ∩ Fin ) ∈ V |
| 76 |
|
nn0ennn |
⊢ ℕ0 ≈ ℕ |
| 77 |
|
nnenom |
⊢ ℕ ≈ ω |
| 78 |
76 77
|
entri |
⊢ ℕ0 ≈ ω |
| 79 |
|
iuneq1 |
⊢ ( 𝑡 = ( 𝑚 ‘ 𝑛 ) → ∪ 𝑦 ∈ 𝑡 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) |
| 80 |
79
|
eqeq2d |
⊢ ( 𝑡 = ( 𝑚 ‘ 𝑛 ) → ( 𝑋 = ∪ 𝑦 ∈ 𝑡 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ↔ 𝑋 = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 81 |
75 78 80
|
axcc4 |
⊢ ( ∀ 𝑛 ∈ ℕ0 ∃ 𝑡 ∈ ( 𝒫 ∪ 𝐽 ∩ Fin ) 𝑋 = ∪ 𝑦 ∈ 𝑡 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) → ∃ 𝑚 ( 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ∧ ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 82 |
73 81
|
syl6 |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → ( 𝐷 ∈ ( TotBnd ‘ 𝑋 ) → ∃ 𝑚 ( 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ∧ ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) |
| 83 |
|
elpwi |
⊢ ( 𝑟 ∈ 𝒫 𝐽 → 𝑟 ⊆ 𝐽 ) |
| 84 |
|
eqid |
⊢ { 𝑢 ∣ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑟 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 } = { 𝑢 ∣ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑟 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 } |
| 85 |
|
eqid |
⊢ { 〈 𝑡 , 𝑘 〉 ∣ ( 𝑘 ∈ ℕ0 ∧ 𝑡 ∈ ( 𝑚 ‘ 𝑘 ) ∧ ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑘 ) ∈ { 𝑢 ∣ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑟 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 } ) } = { 〈 𝑡 , 𝑘 〉 ∣ ( 𝑘 ∈ ℕ0 ∧ 𝑡 ∈ ( 𝑚 ‘ 𝑘 ) ∧ ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑘 ) ∈ { 𝑢 ∣ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑟 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 } ) } |
| 86 |
|
eqid |
⊢ ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) = ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) |
| 87 |
|
simpl |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ ( 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ∧ ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
| 88 |
34
|
pweqd |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝒫 𝑋 = 𝒫 ∪ 𝐽 ) |
| 89 |
88
|
ineq1d |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → ( 𝒫 𝑋 ∩ Fin ) = ( 𝒫 ∪ 𝐽 ∩ Fin ) ) |
| 90 |
89
|
feq3d |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → ( 𝑚 : ℕ0 ⟶ ( 𝒫 𝑋 ∩ Fin ) ↔ 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ) ) |
| 91 |
90
|
biimpar |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ) → 𝑚 : ℕ0 ⟶ ( 𝒫 𝑋 ∩ Fin ) ) |
| 92 |
91
|
adantrr |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ ( 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ∧ ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → 𝑚 : ℕ0 ⟶ ( 𝒫 𝑋 ∩ Fin ) ) |
| 93 |
|
oveq1 |
⊢ ( 𝑡 = 𝑦 → ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑛 ) = ( 𝑦 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑛 ) ) |
| 94 |
93
|
cbviunv |
⊢ ∪ 𝑡 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑛 ) = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑛 ) |
| 95 |
|
id |
⊢ ( 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) → 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ) |
| 96 |
|
inss1 |
⊢ ( 𝒫 ∪ 𝐽 ∩ Fin ) ⊆ 𝒫 ∪ 𝐽 |
| 97 |
96 88
|
sseqtrrid |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → ( 𝒫 ∪ 𝐽 ∩ Fin ) ⊆ 𝒫 𝑋 ) |
| 98 |
|
fss |
⊢ ( ( 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ∧ ( 𝒫 ∪ 𝐽 ∩ Fin ) ⊆ 𝒫 𝑋 ) → 𝑚 : ℕ0 ⟶ 𝒫 𝑋 ) |
| 99 |
95 97 98
|
syl2anr |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ) → 𝑚 : ℕ0 ⟶ 𝒫 𝑋 ) |
| 100 |
99
|
ffvelcdmda |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑚 ‘ 𝑛 ) ∈ 𝒫 𝑋 ) |
| 101 |
100
|
elpwid |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑚 ‘ 𝑛 ) ⊆ 𝑋 ) |
| 102 |
101
|
sselda |
⊢ ( ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ) → 𝑦 ∈ 𝑋 ) |
| 103 |
|
simplr |
⊢ ( ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ) → 𝑛 ∈ ℕ0 ) |
| 104 |
|
oveq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) |
| 105 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( 2 ↑ 𝑚 ) = ( 2 ↑ 𝑛 ) ) |
| 106 |
105
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( 1 / ( 2 ↑ 𝑚 ) ) = ( 1 / ( 2 ↑ 𝑛 ) ) ) |
| 107 |
106
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) |
| 108 |
|
ovex |
⊢ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ∈ V |
| 109 |
104 107 86 108
|
ovmpo |
⊢ ( ( 𝑦 ∈ 𝑋 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑦 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑛 ) = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) |
| 110 |
102 103 109
|
syl2anc |
⊢ ( ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ) → ( 𝑦 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑛 ) = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) |
| 111 |
110
|
iuneq2dv |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ) ∧ 𝑛 ∈ ℕ0 ) → ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑛 ) = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) |
| 112 |
94 111
|
eqtrid |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ) ∧ 𝑛 ∈ ℕ0 ) → ∪ 𝑡 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑛 ) = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) |
| 113 |
112
|
eqeq2d |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑋 = ∪ 𝑡 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑛 ) ↔ 𝑋 = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 114 |
113
|
biimprd |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑋 = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) → 𝑋 = ∪ 𝑡 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑛 ) ) ) |
| 115 |
114
|
ralimdva |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ) → ( ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) → ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑡 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑛 ) ) ) |
| 116 |
115
|
impr |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ ( 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ∧ ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑡 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑛 ) ) |
| 117 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝑚 ‘ 𝑛 ) = ( 𝑚 ‘ 𝑘 ) ) |
| 118 |
117
|
iuneq1d |
⊢ ( 𝑛 = 𝑘 → ∪ 𝑡 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑛 ) = ∪ 𝑡 ∈ ( 𝑚 ‘ 𝑘 ) ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑛 ) ) |
| 119 |
|
simpl |
⊢ ( ( 𝑛 = 𝑘 ∧ 𝑡 ∈ ( 𝑚 ‘ 𝑘 ) ) → 𝑛 = 𝑘 ) |
| 120 |
119
|
oveq2d |
⊢ ( ( 𝑛 = 𝑘 ∧ 𝑡 ∈ ( 𝑚 ‘ 𝑘 ) ) → ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑛 ) = ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑘 ) ) |
| 121 |
120
|
iuneq2dv |
⊢ ( 𝑛 = 𝑘 → ∪ 𝑡 ∈ ( 𝑚 ‘ 𝑘 ) ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑛 ) = ∪ 𝑡 ∈ ( 𝑚 ‘ 𝑘 ) ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑘 ) ) |
| 122 |
118 121
|
eqtrd |
⊢ ( 𝑛 = 𝑘 → ∪ 𝑡 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑛 ) = ∪ 𝑡 ∈ ( 𝑚 ‘ 𝑘 ) ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑘 ) ) |
| 123 |
122
|
eqeq2d |
⊢ ( 𝑛 = 𝑘 → ( 𝑋 = ∪ 𝑡 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑛 ) ↔ 𝑋 = ∪ 𝑡 ∈ ( 𝑚 ‘ 𝑘 ) ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑘 ) ) ) |
| 124 |
123
|
cbvralvw |
⊢ ( ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑡 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑛 ) ↔ ∀ 𝑘 ∈ ℕ0 𝑋 = ∪ 𝑡 ∈ ( 𝑚 ‘ 𝑘 ) ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑘 ) ) |
| 125 |
116 124
|
sylib |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ ( 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ∧ ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → ∀ 𝑘 ∈ ℕ0 𝑋 = ∪ 𝑡 ∈ ( 𝑚 ‘ 𝑘 ) ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑘 ) ) |
| 126 |
1 84 85 86 87 92 125
|
heiborlem10 |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ ( 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ∧ ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ∧ ( 𝑟 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑟 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑟 ∩ Fin ) ∪ 𝐽 = ∪ 𝑣 ) |
| 127 |
126
|
exp32 |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ ( 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ∧ ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → ( 𝑟 ⊆ 𝐽 → ( ∪ 𝐽 = ∪ 𝑟 → ∃ 𝑣 ∈ ( 𝒫 𝑟 ∩ Fin ) ∪ 𝐽 = ∪ 𝑣 ) ) ) |
| 128 |
83 127
|
syl5 |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ ( 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ∧ ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → ( 𝑟 ∈ 𝒫 𝐽 → ( ∪ 𝐽 = ∪ 𝑟 → ∃ 𝑣 ∈ ( 𝒫 𝑟 ∩ Fin ) ∪ 𝐽 = ∪ 𝑣 ) ) ) |
| 129 |
128
|
ralrimiv |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ ( 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ∧ ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → ∀ 𝑟 ∈ 𝒫 𝐽 ( ∪ 𝐽 = ∪ 𝑟 → ∃ 𝑣 ∈ ( 𝒫 𝑟 ∩ Fin ) ∪ 𝐽 = ∪ 𝑣 ) ) |
| 130 |
129
|
ex |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → ( ( 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ∧ ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) → ∀ 𝑟 ∈ 𝒫 𝐽 ( ∪ 𝐽 = ∪ 𝑟 → ∃ 𝑣 ∈ ( 𝒫 𝑟 ∩ Fin ) ∪ 𝐽 = ∪ 𝑣 ) ) ) |
| 131 |
130
|
exlimdv |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → ( ∃ 𝑚 ( 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ∧ ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) → ∀ 𝑟 ∈ 𝒫 𝐽 ( ∪ 𝐽 = ∪ 𝑟 → ∃ 𝑣 ∈ ( 𝒫 𝑟 ∩ Fin ) ∪ 𝐽 = ∪ 𝑣 ) ) ) |
| 132 |
82 131
|
syld |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → ( 𝐷 ∈ ( TotBnd ‘ 𝑋 ) → ∀ 𝑟 ∈ 𝒫 𝐽 ( ∪ 𝐽 = ∪ 𝑟 → ∃ 𝑣 ∈ ( 𝒫 𝑟 ∩ Fin ) ∪ 𝐽 = ∪ 𝑣 ) ) ) |
| 133 |
132
|
imp |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝐷 ∈ ( TotBnd ‘ 𝑋 ) ) → ∀ 𝑟 ∈ 𝒫 𝐽 ( ∪ 𝐽 = ∪ 𝑟 → ∃ 𝑣 ∈ ( 𝒫 𝑟 ∩ Fin ) ∪ 𝐽 = ∪ 𝑣 ) ) |
| 134 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 135 |
134
|
iscmp |
⊢ ( 𝐽 ∈ Comp ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑟 ∈ 𝒫 𝐽 ( ∪ 𝐽 = ∪ 𝑟 → ∃ 𝑣 ∈ ( 𝒫 𝑟 ∩ Fin ) ∪ 𝐽 = ∪ 𝑣 ) ) ) |
| 136 |
8 133 135
|
sylanbrc |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝐷 ∈ ( TotBnd ‘ 𝑋 ) ) → 𝐽 ∈ Comp ) |
| 137 |
4 136
|
jca |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝐷 ∈ ( TotBnd ‘ 𝑋 ) ) → ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ) |
| 138 |
2 137
|
impbii |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ↔ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝐷 ∈ ( TotBnd ‘ 𝑋 ) ) ) |