Step |
Hyp |
Ref |
Expression |
1 |
|
heibor.1 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
2 |
|
simpll |
⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ ( 𝑥 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑥 : ℕ ⟶ 𝑋 ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
3 |
|
simplr |
⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ ( 𝑥 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑥 : ℕ ⟶ 𝑋 ) ) → 𝐽 ∈ Comp ) |
4 |
|
simprl |
⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ ( 𝑥 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑥 : ℕ ⟶ 𝑋 ) ) → 𝑥 ∈ ( Cau ‘ 𝐷 ) ) |
5 |
|
simprr |
⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ ( 𝑥 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑥 : ℕ ⟶ 𝑋 ) ) → 𝑥 : ℕ ⟶ 𝑋 ) |
6 |
1 2 3 4 5
|
heibor1lem |
⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ ( 𝑥 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑥 : ℕ ⟶ 𝑋 ) ) → 𝑥 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
7 |
6
|
expr |
⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑥 ∈ ( Cau ‘ 𝐷 ) ) → ( 𝑥 : ℕ ⟶ 𝑋 → 𝑥 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) |
8 |
7
|
ralrimiva |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) → ∀ 𝑥 ∈ ( Cau ‘ 𝐷 ) ( 𝑥 : ℕ ⟶ 𝑋 → 𝑥 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) |
9 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
10 |
|
1zzd |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) → 1 ∈ ℤ ) |
11 |
|
simpl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
12 |
9 1 10 11
|
iscmet3 |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) → ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ↔ ∀ 𝑥 ∈ ( Cau ‘ 𝐷 ) ( 𝑥 : ℕ ⟶ 𝑋 → 𝑥 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ) |
13 |
8 12
|
mpbird |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
14 |
|
simplr |
⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → 𝐽 ∈ Comp ) |
15 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
16 |
|
id |
⊢ ( 𝑧 ∈ 𝑋 → 𝑧 ∈ 𝑋 ) |
17 |
|
rpxr |
⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ* ) |
18 |
1
|
blopn |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) → ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ∈ 𝐽 ) |
19 |
15 16 17 18
|
syl3an |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) → ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ∈ 𝐽 ) |
20 |
19
|
3com23 |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑟 ∈ ℝ+ ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ∈ 𝐽 ) |
21 |
20
|
3expa |
⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ∈ 𝐽 ) |
22 |
|
eleq1a |
⊢ ( ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ∈ 𝐽 → ( 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) → 𝑦 ∈ 𝐽 ) ) |
23 |
21 22
|
syl |
⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) → 𝑦 ∈ 𝐽 ) ) |
24 |
23
|
rexlimdva |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑟 ∈ ℝ+ ) → ( ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) → 𝑦 ∈ 𝐽 ) ) |
25 |
24
|
adantlr |
⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → ( ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) → 𝑦 ∈ 𝐽 ) ) |
26 |
25
|
abssdv |
⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ⊆ 𝐽 ) |
27 |
15
|
ad2antrr |
⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
28 |
1
|
mopnuni |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
29 |
27 28
|
syl |
⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → 𝑋 = ∪ 𝐽 ) |
30 |
|
blcntr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) → 𝑧 ∈ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ) |
31 |
15 30
|
syl3an1 |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) → 𝑧 ∈ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ) |
32 |
31
|
3com23 |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑟 ∈ ℝ+ ∧ 𝑧 ∈ 𝑋 ) → 𝑧 ∈ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ) |
33 |
32
|
3expa |
⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑧 ∈ 𝑋 ) → 𝑧 ∈ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ) |
34 |
|
ovex |
⊢ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ∈ V |
35 |
34
|
elabrex |
⊢ ( 𝑧 ∈ 𝑋 → ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ∈ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) |
36 |
35
|
adantl |
⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ∈ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) |
37 |
|
elunii |
⊢ ( ( 𝑧 ∈ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ∈ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) → 𝑧 ∈ ∪ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) |
38 |
33 36 37
|
syl2anc |
⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑧 ∈ 𝑋 ) → 𝑧 ∈ ∪ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) |
39 |
38
|
ralrimiva |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑟 ∈ ℝ+ ) → ∀ 𝑧 ∈ 𝑋 𝑧 ∈ ∪ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) |
40 |
39
|
adantlr |
⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → ∀ 𝑧 ∈ 𝑋 𝑧 ∈ ∪ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) |
41 |
|
nfcv |
⊢ Ⅎ 𝑧 𝑋 |
42 |
|
nfre1 |
⊢ Ⅎ 𝑧 ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) |
43 |
42
|
nfab |
⊢ Ⅎ 𝑧 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } |
44 |
43
|
nfuni |
⊢ Ⅎ 𝑧 ∪ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } |
45 |
41 44
|
dfss3f |
⊢ ( 𝑋 ⊆ ∪ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ↔ ∀ 𝑧 ∈ 𝑋 𝑧 ∈ ∪ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) |
46 |
40 45
|
sylibr |
⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → 𝑋 ⊆ ∪ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) |
47 |
29 46
|
eqsstrrd |
⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → ∪ 𝐽 ⊆ ∪ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) |
48 |
26
|
unissd |
⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → ∪ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ⊆ ∪ 𝐽 ) |
49 |
47 48
|
eqssd |
⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → ∪ 𝐽 = ∪ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) |
50 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
51 |
50
|
cmpcov |
⊢ ( ( 𝐽 ∈ Comp ∧ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) → ∃ 𝑥 ∈ ( 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∩ Fin ) ∪ 𝐽 = ∪ 𝑥 ) |
52 |
14 26 49 51
|
syl3anc |
⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑥 ∈ ( 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∩ Fin ) ∪ 𝐽 = ∪ 𝑥 ) |
53 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∩ Fin ) ↔ ( 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∧ 𝑥 ∈ Fin ) ) |
54 |
|
ancom |
⊢ ( ( 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∧ 𝑥 ∈ Fin ) ↔ ( 𝑥 ∈ Fin ∧ 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) ) |
55 |
53 54
|
bitri |
⊢ ( 𝑥 ∈ ( 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∩ Fin ) ↔ ( 𝑥 ∈ Fin ∧ 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) ) |
56 |
55
|
anbi1i |
⊢ ( ( 𝑥 ∈ ( 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑥 ) ↔ ( ( 𝑥 ∈ Fin ∧ 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) ∧ ∪ 𝐽 = ∪ 𝑥 ) ) |
57 |
|
anass |
⊢ ( ( ( 𝑥 ∈ Fin ∧ 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) ∧ ∪ 𝐽 = ∪ 𝑥 ) ↔ ( 𝑥 ∈ Fin ∧ ( 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∧ ∪ 𝐽 = ∪ 𝑥 ) ) ) |
58 |
56 57
|
bitri |
⊢ ( ( 𝑥 ∈ ( 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑥 ) ↔ ( 𝑥 ∈ Fin ∧ ( 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∧ ∪ 𝐽 = ∪ 𝑥 ) ) ) |
59 |
58
|
rexbii2 |
⊢ ( ∃ 𝑥 ∈ ( 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∩ Fin ) ∪ 𝐽 = ∪ 𝑥 ↔ ∃ 𝑥 ∈ Fin ( 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∧ ∪ 𝐽 = ∪ 𝑥 ) ) |
60 |
52 59
|
sylib |
⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑥 ∈ Fin ( 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∧ ∪ 𝐽 = ∪ 𝑥 ) ) |
61 |
|
ancom |
⊢ ( ( 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∧ ∪ 𝐽 = ∪ 𝑥 ) ↔ ( ∪ 𝐽 = ∪ 𝑥 ∧ 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) ) |
62 |
|
eqcom |
⊢ ( ∪ 𝑥 = 𝑋 ↔ 𝑋 = ∪ 𝑥 ) |
63 |
29
|
eqeq1d |
⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝑋 = ∪ 𝑥 ↔ ∪ 𝐽 = ∪ 𝑥 ) ) |
64 |
62 63
|
bitr2id |
⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → ( ∪ 𝐽 = ∪ 𝑥 ↔ ∪ 𝑥 = 𝑋 ) ) |
65 |
64
|
anbi1d |
⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → ( ( ∪ 𝐽 = ∪ 𝑥 ∧ 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) ↔ ( ∪ 𝑥 = 𝑋 ∧ 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) ) ) |
66 |
61 65
|
syl5bb |
⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∧ ∪ 𝐽 = ∪ 𝑥 ) ↔ ( ∪ 𝑥 = 𝑋 ∧ 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) ) ) |
67 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } → 𝑥 ⊆ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) |
68 |
|
ssabral |
⊢ ( 𝑥 ⊆ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ↔ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ) |
69 |
67 68
|
sylib |
⊢ ( 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } → ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ) |
70 |
69
|
anim2i |
⊢ ( ( ∪ 𝑥 = 𝑋 ∧ 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) → ( ∪ 𝑥 = 𝑋 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
71 |
66 70
|
syl6bi |
⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∧ ∪ 𝐽 = ∪ 𝑥 ) → ( ∪ 𝑥 = 𝑋 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ) ) ) |
72 |
71
|
reximdv |
⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → ( ∃ 𝑥 ∈ Fin ( 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∧ ∪ 𝐽 = ∪ 𝑥 ) → ∃ 𝑥 ∈ Fin ( ∪ 𝑥 = 𝑋 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ) ) ) |
73 |
60 72
|
mpd |
⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑥 ∈ Fin ( ∪ 𝑥 = 𝑋 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
74 |
73
|
ralrimiva |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) → ∀ 𝑟 ∈ ℝ+ ∃ 𝑥 ∈ Fin ( ∪ 𝑥 = 𝑋 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
75 |
|
istotbnd |
⊢ ( 𝐷 ∈ ( TotBnd ‘ 𝑋 ) ↔ ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑟 ∈ ℝ+ ∃ 𝑥 ∈ Fin ( ∪ 𝑥 = 𝑋 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ) ) ) |
76 |
11 74 75
|
sylanbrc |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) → 𝐷 ∈ ( TotBnd ‘ 𝑋 ) ) |
77 |
13 76
|
jca |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) → ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝐷 ∈ ( TotBnd ‘ 𝑋 ) ) ) |