| Step |
Hyp |
Ref |
Expression |
| 1 |
|
heibor.1 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
| 2 |
|
heibor1.3 |
⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 3 |
|
heibor1.4 |
⊢ ( 𝜑 → 𝐽 ∈ Comp ) |
| 4 |
|
heibor1.5 |
⊢ ( 𝜑 → 𝐹 ∈ ( Cau ‘ 𝐷 ) ) |
| 5 |
|
heibor1.6 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝑋 ) |
| 6 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 7 |
2 6
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 8 |
1
|
mopntop |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 9 |
7 8
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 10 |
|
imassrn |
⊢ ( 𝐹 “ 𝑢 ) ⊆ ran 𝐹 |
| 11 |
5
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ 𝑋 ) |
| 12 |
1
|
mopnuni |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 13 |
7 12
|
syl |
⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
| 14 |
11 13
|
sseqtrd |
⊢ ( 𝜑 → ran 𝐹 ⊆ ∪ 𝐽 ) |
| 15 |
10 14
|
sstrid |
⊢ ( 𝜑 → ( 𝐹 “ 𝑢 ) ⊆ ∪ 𝐽 ) |
| 16 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 17 |
16
|
clscld |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐹 “ 𝑢 ) ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 18 |
9 15 17
|
syl2anc |
⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 19 |
|
eleq1a |
⊢ ( ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∈ ( Clsd ‘ 𝐽 ) → ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑘 ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 20 |
18 19
|
syl |
⊢ ( 𝜑 → ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑘 ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 21 |
20
|
rexlimdvw |
⊢ ( 𝜑 → ( ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑘 ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 22 |
21
|
abssdv |
⊢ ( 𝜑 → { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ⊆ ( Clsd ‘ 𝐽 ) ) |
| 23 |
|
fvex |
⊢ ( Clsd ‘ 𝐽 ) ∈ V |
| 24 |
23
|
elpw2 |
⊢ ( { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∈ 𝒫 ( Clsd ‘ 𝐽 ) ↔ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ⊆ ( Clsd ‘ 𝐽 ) ) |
| 25 |
22 24
|
sylibr |
⊢ ( 𝜑 → { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∈ 𝒫 ( Clsd ‘ 𝐽 ) ) |
| 26 |
|
elin |
⊢ ( 𝑟 ∈ ( 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∩ Fin ) ↔ ( 𝑟 ∈ 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∧ 𝑟 ∈ Fin ) ) |
| 27 |
|
velpw |
⊢ ( 𝑟 ∈ 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ↔ 𝑟 ⊆ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) |
| 28 |
|
ssabral |
⊢ ( 𝑟 ⊆ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ↔ ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) |
| 29 |
27 28
|
bitri |
⊢ ( 𝑟 ∈ 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ↔ ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) |
| 30 |
29
|
anbi1i |
⊢ ( ( 𝑟 ∈ 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∧ 𝑟 ∈ Fin ) ↔ ( ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ 𝑟 ∈ Fin ) ) |
| 31 |
26 30
|
bitri |
⊢ ( 𝑟 ∈ ( 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∩ Fin ) ↔ ( ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ 𝑟 ∈ Fin ) ) |
| 32 |
|
raleq |
⊢ ( 𝑚 = ∅ → ( ∀ 𝑘 ∈ 𝑚 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ↔ ∀ 𝑘 ∈ ∅ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) |
| 33 |
32
|
anbi2d |
⊢ ( 𝑚 = ∅ → ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑚 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ↔ ( 𝜑 ∧ ∀ 𝑘 ∈ ∅ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) ) |
| 34 |
|
inteq |
⊢ ( 𝑚 = ∅ → ∩ 𝑚 = ∩ ∅ ) |
| 35 |
34
|
sseq2d |
⊢ ( 𝑚 = ∅ → ( ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑚 ↔ ( 𝐹 “ 𝑘 ) ⊆ ∩ ∅ ) ) |
| 36 |
35
|
rexbidv |
⊢ ( 𝑚 = ∅ → ( ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑚 ↔ ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ∅ ) ) |
| 37 |
33 36
|
imbi12d |
⊢ ( 𝑚 = ∅ → ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑚 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑚 ) ↔ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ∅ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ∅ ) ) ) |
| 38 |
|
raleq |
⊢ ( 𝑚 = 𝑦 → ( ∀ 𝑘 ∈ 𝑚 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ↔ ∀ 𝑘 ∈ 𝑦 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) |
| 39 |
38
|
anbi2d |
⊢ ( 𝑚 = 𝑦 → ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑚 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ↔ ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑦 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) ) |
| 40 |
|
inteq |
⊢ ( 𝑚 = 𝑦 → ∩ 𝑚 = ∩ 𝑦 ) |
| 41 |
40
|
sseq2d |
⊢ ( 𝑚 = 𝑦 → ( ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑚 ↔ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) ) |
| 42 |
41
|
rexbidv |
⊢ ( 𝑚 = 𝑦 → ( ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑚 ↔ ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) ) |
| 43 |
39 42
|
imbi12d |
⊢ ( 𝑚 = 𝑦 → ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑚 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑚 ) ↔ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑦 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) ) ) |
| 44 |
|
raleq |
⊢ ( 𝑚 = ( 𝑦 ∪ { 𝑛 } ) → ( ∀ 𝑘 ∈ 𝑚 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ↔ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) |
| 45 |
44
|
anbi2d |
⊢ ( 𝑚 = ( 𝑦 ∪ { 𝑛 } ) → ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑚 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ↔ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) ) |
| 46 |
|
inteq |
⊢ ( 𝑚 = ( 𝑦 ∪ { 𝑛 } ) → ∩ 𝑚 = ∩ ( 𝑦 ∪ { 𝑛 } ) ) |
| 47 |
46
|
sseq2d |
⊢ ( 𝑚 = ( 𝑦 ∪ { 𝑛 } ) → ( ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑚 ↔ ( 𝐹 “ 𝑘 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) |
| 48 |
47
|
rexbidv |
⊢ ( 𝑚 = ( 𝑦 ∪ { 𝑛 } ) → ( ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑚 ↔ ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) |
| 49 |
45 48
|
imbi12d |
⊢ ( 𝑚 = ( 𝑦 ∪ { 𝑛 } ) → ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑚 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑚 ) ↔ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) ) |
| 50 |
|
raleq |
⊢ ( 𝑚 = 𝑟 → ( ∀ 𝑘 ∈ 𝑚 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ↔ ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) |
| 51 |
50
|
anbi2d |
⊢ ( 𝑚 = 𝑟 → ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑚 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ↔ ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) ) |
| 52 |
|
inteq |
⊢ ( 𝑚 = 𝑟 → ∩ 𝑚 = ∩ 𝑟 ) |
| 53 |
52
|
sseq2d |
⊢ ( 𝑚 = 𝑟 → ( ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑚 ↔ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑟 ) ) |
| 54 |
53
|
rexbidv |
⊢ ( 𝑚 = 𝑟 → ( ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑚 ↔ ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑟 ) ) |
| 55 |
51 54
|
imbi12d |
⊢ ( 𝑚 = 𝑟 → ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑚 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑚 ) ↔ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑟 ) ) ) |
| 56 |
|
uzf |
⊢ ℤ≥ : ℤ ⟶ 𝒫 ℤ |
| 57 |
|
ffn |
⊢ ( ℤ≥ : ℤ ⟶ 𝒫 ℤ → ℤ≥ Fn ℤ ) |
| 58 |
56 57
|
ax-mp |
⊢ ℤ≥ Fn ℤ |
| 59 |
|
0z |
⊢ 0 ∈ ℤ |
| 60 |
|
fnfvelrn |
⊢ ( ( ℤ≥ Fn ℤ ∧ 0 ∈ ℤ ) → ( ℤ≥ ‘ 0 ) ∈ ran ℤ≥ ) |
| 61 |
58 59 60
|
mp2an |
⊢ ( ℤ≥ ‘ 0 ) ∈ ran ℤ≥ |
| 62 |
|
ssv |
⊢ ( 𝐹 “ ( ℤ≥ ‘ 0 ) ) ⊆ V |
| 63 |
|
int0 |
⊢ ∩ ∅ = V |
| 64 |
62 63
|
sseqtrri |
⊢ ( 𝐹 “ ( ℤ≥ ‘ 0 ) ) ⊆ ∩ ∅ |
| 65 |
|
imaeq2 |
⊢ ( 𝑘 = ( ℤ≥ ‘ 0 ) → ( 𝐹 “ 𝑘 ) = ( 𝐹 “ ( ℤ≥ ‘ 0 ) ) ) |
| 66 |
65
|
sseq1d |
⊢ ( 𝑘 = ( ℤ≥ ‘ 0 ) → ( ( 𝐹 “ 𝑘 ) ⊆ ∩ ∅ ↔ ( 𝐹 “ ( ℤ≥ ‘ 0 ) ) ⊆ ∩ ∅ ) ) |
| 67 |
66
|
rspcev |
⊢ ( ( ( ℤ≥ ‘ 0 ) ∈ ran ℤ≥ ∧ ( 𝐹 “ ( ℤ≥ ‘ 0 ) ) ⊆ ∩ ∅ ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ∅ ) |
| 68 |
61 64 67
|
mp2an |
⊢ ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ∅ |
| 69 |
68
|
a1i |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ∅ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ∅ ) |
| 70 |
|
ssun1 |
⊢ 𝑦 ⊆ ( 𝑦 ∪ { 𝑛 } ) |
| 71 |
|
ssralv |
⊢ ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑛 } ) → ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → ∀ 𝑘 ∈ 𝑦 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) |
| 72 |
70 71
|
ax-mp |
⊢ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → ∀ 𝑘 ∈ 𝑦 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) |
| 73 |
72
|
anim2i |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑦 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) |
| 74 |
73
|
imim1i |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑦 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) → ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) ) |
| 75 |
|
ssun2 |
⊢ { 𝑛 } ⊆ ( 𝑦 ∪ { 𝑛 } ) |
| 76 |
|
ssralv |
⊢ ( { 𝑛 } ⊆ ( 𝑦 ∪ { 𝑛 } ) → ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → ∀ 𝑘 ∈ { 𝑛 } ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) |
| 77 |
75 76
|
ax-mp |
⊢ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → ∀ 𝑘 ∈ { 𝑛 } ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) |
| 78 |
|
vex |
⊢ 𝑛 ∈ V |
| 79 |
|
eqeq1 |
⊢ ( 𝑘 = 𝑛 → ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ↔ 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) |
| 80 |
79
|
rexbidv |
⊢ ( 𝑘 = 𝑛 → ( ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ↔ ∃ 𝑢 ∈ ran ℤ≥ 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) |
| 81 |
78 80
|
ralsn |
⊢ ( ∀ 𝑘 ∈ { 𝑛 } ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ↔ ∃ 𝑢 ∈ ran ℤ≥ 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) |
| 82 |
77 81
|
sylib |
⊢ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → ∃ 𝑢 ∈ ran ℤ≥ 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) |
| 83 |
|
uzin2 |
⊢ ( ( 𝑢 ∈ ran ℤ≥ ∧ 𝑘 ∈ ran ℤ≥ ) → ( 𝑢 ∩ 𝑘 ) ∈ ran ℤ≥ ) |
| 84 |
10 11
|
sstrid |
⊢ ( 𝜑 → ( 𝐹 “ 𝑢 ) ⊆ 𝑋 ) |
| 85 |
84 13
|
sseqtrd |
⊢ ( 𝜑 → ( 𝐹 “ 𝑢 ) ⊆ ∪ 𝐽 ) |
| 86 |
16
|
sscls |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐹 “ 𝑢 ) ⊆ ∪ 𝐽 ) → ( 𝐹 “ 𝑢 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) |
| 87 |
9 85 86
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 “ 𝑢 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) |
| 88 |
|
sseq2 |
⊢ ( 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → ( ( 𝐹 “ 𝑢 ) ⊆ 𝑛 ↔ ( 𝐹 “ 𝑢 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) |
| 89 |
87 88
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → ( 𝐹 “ 𝑢 ) ⊆ 𝑛 ) ) |
| 90 |
|
inss2 |
⊢ ( 𝑢 ∩ 𝑘 ) ⊆ 𝑘 |
| 91 |
|
inss1 |
⊢ ( 𝑢 ∩ 𝑘 ) ⊆ 𝑢 |
| 92 |
|
imass2 |
⊢ ( ( 𝑢 ∩ 𝑘 ) ⊆ 𝑘 → ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ( 𝐹 “ 𝑘 ) ) |
| 93 |
|
imass2 |
⊢ ( ( 𝑢 ∩ 𝑘 ) ⊆ 𝑢 → ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ( 𝐹 “ 𝑢 ) ) |
| 94 |
92 93
|
anim12i |
⊢ ( ( ( 𝑢 ∩ 𝑘 ) ⊆ 𝑘 ∧ ( 𝑢 ∩ 𝑘 ) ⊆ 𝑢 ) → ( ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ( 𝐹 “ 𝑘 ) ∧ ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ( 𝐹 “ 𝑢 ) ) ) |
| 95 |
|
ssin |
⊢ ( ( ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ( 𝐹 “ 𝑘 ) ∧ ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ( 𝐹 “ 𝑢 ) ) ↔ ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ( ( 𝐹 “ 𝑘 ) ∩ ( 𝐹 “ 𝑢 ) ) ) |
| 96 |
94 95
|
sylib |
⊢ ( ( ( 𝑢 ∩ 𝑘 ) ⊆ 𝑘 ∧ ( 𝑢 ∩ 𝑘 ) ⊆ 𝑢 ) → ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ( ( 𝐹 “ 𝑘 ) ∩ ( 𝐹 “ 𝑢 ) ) ) |
| 97 |
90 91 96
|
mp2an |
⊢ ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ( ( 𝐹 “ 𝑘 ) ∩ ( 𝐹 “ 𝑢 ) ) |
| 98 |
|
ss2in |
⊢ ( ( ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ∧ ( 𝐹 “ 𝑢 ) ⊆ 𝑛 ) → ( ( 𝐹 “ 𝑘 ) ∩ ( 𝐹 “ 𝑢 ) ) ⊆ ( ∩ 𝑦 ∩ 𝑛 ) ) |
| 99 |
97 98
|
sstrid |
⊢ ( ( ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ∧ ( 𝐹 “ 𝑢 ) ⊆ 𝑛 ) → ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ( ∩ 𝑦 ∩ 𝑛 ) ) |
| 100 |
78
|
intunsn |
⊢ ∩ ( 𝑦 ∪ { 𝑛 } ) = ( ∩ 𝑦 ∩ 𝑛 ) |
| 101 |
99 100
|
sseqtrrdi |
⊢ ( ( ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ∧ ( 𝐹 “ 𝑢 ) ⊆ 𝑛 ) → ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) |
| 102 |
101
|
expcom |
⊢ ( ( 𝐹 “ 𝑢 ) ⊆ 𝑛 → ( ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 → ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) |
| 103 |
89 102
|
syl6 |
⊢ ( 𝜑 → ( 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → ( ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 → ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) ) |
| 104 |
103
|
impd |
⊢ ( 𝜑 → ( ( 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) → ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) |
| 105 |
|
imaeq2 |
⊢ ( 𝑚 = ( 𝑢 ∩ 𝑘 ) → ( 𝐹 “ 𝑚 ) = ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ) |
| 106 |
105
|
sseq1d |
⊢ ( 𝑚 = ( 𝑢 ∩ 𝑘 ) → ( ( 𝐹 “ 𝑚 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ↔ ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) |
| 107 |
106
|
rspcev |
⊢ ( ( ( 𝑢 ∩ 𝑘 ) ∈ ran ℤ≥ ∧ ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) → ∃ 𝑚 ∈ ran ℤ≥ ( 𝐹 “ 𝑚 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) |
| 108 |
107
|
expcom |
⊢ ( ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) → ( ( 𝑢 ∩ 𝑘 ) ∈ ran ℤ≥ → ∃ 𝑚 ∈ ran ℤ≥ ( 𝐹 “ 𝑚 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) |
| 109 |
104 108
|
syl6 |
⊢ ( 𝜑 → ( ( 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) → ( ( 𝑢 ∩ 𝑘 ) ∈ ran ℤ≥ → ∃ 𝑚 ∈ ran ℤ≥ ( 𝐹 “ 𝑚 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) ) |
| 110 |
109
|
com23 |
⊢ ( 𝜑 → ( ( 𝑢 ∩ 𝑘 ) ∈ ran ℤ≥ → ( ( 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) → ∃ 𝑚 ∈ ran ℤ≥ ( 𝐹 “ 𝑚 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) ) |
| 111 |
83 110
|
syl5 |
⊢ ( 𝜑 → ( ( 𝑢 ∈ ran ℤ≥ ∧ 𝑘 ∈ ran ℤ≥ ) → ( ( 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) → ∃ 𝑚 ∈ ran ℤ≥ ( 𝐹 “ 𝑚 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) ) |
| 112 |
111
|
rexlimdvv |
⊢ ( 𝜑 → ( ∃ 𝑢 ∈ ran ℤ≥ ∃ 𝑘 ∈ ran ℤ≥ ( 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) → ∃ 𝑚 ∈ ran ℤ≥ ( 𝐹 “ 𝑚 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) |
| 113 |
|
reeanv |
⊢ ( ∃ 𝑢 ∈ ran ℤ≥ ∃ 𝑘 ∈ ran ℤ≥ ( 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) ↔ ( ∃ 𝑢 ∈ ran ℤ≥ 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) ) |
| 114 |
|
imaeq2 |
⊢ ( 𝑚 = 𝑘 → ( 𝐹 “ 𝑚 ) = ( 𝐹 “ 𝑘 ) ) |
| 115 |
114
|
sseq1d |
⊢ ( 𝑚 = 𝑘 → ( ( 𝐹 “ 𝑚 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ↔ ( 𝐹 “ 𝑘 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) |
| 116 |
115
|
cbvrexvw |
⊢ ( ∃ 𝑚 ∈ ran ℤ≥ ( 𝐹 “ 𝑚 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ↔ ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) |
| 117 |
112 113 116
|
3imtr3g |
⊢ ( 𝜑 → ( ( ∃ 𝑢 ∈ ran ℤ≥ 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) |
| 118 |
117
|
expd |
⊢ ( 𝜑 → ( ∃ 𝑢 ∈ ran ℤ≥ 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → ( ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) ) |
| 119 |
82 118
|
syl5 |
⊢ ( 𝜑 → ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → ( ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) ) |
| 120 |
119
|
imp |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ( ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) |
| 121 |
74 120
|
sylcom |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑦 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) → ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) |
| 122 |
121
|
a1i |
⊢ ( 𝑦 ∈ Fin → ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑦 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) → ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) ) |
| 123 |
37 43 49 55 69 122
|
findcard2 |
⊢ ( 𝑟 ∈ Fin → ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑟 ) ) |
| 124 |
123
|
com12 |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ( 𝑟 ∈ Fin → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑟 ) ) |
| 125 |
124
|
impr |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ 𝑟 ∈ Fin ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑟 ) |
| 126 |
5
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ℕ ) |
| 127 |
|
inss1 |
⊢ ( 𝑘 ∩ ℕ ) ⊆ 𝑘 |
| 128 |
|
imass2 |
⊢ ( ( 𝑘 ∩ ℕ ) ⊆ 𝑘 → ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ⊆ ( 𝐹 “ 𝑘 ) ) |
| 129 |
127 128
|
ax-mp |
⊢ ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ⊆ ( 𝐹 “ 𝑘 ) |
| 130 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 131 |
|
1z |
⊢ 1 ∈ ℤ |
| 132 |
|
fnfvelrn |
⊢ ( ( ℤ≥ Fn ℤ ∧ 1 ∈ ℤ ) → ( ℤ≥ ‘ 1 ) ∈ ran ℤ≥ ) |
| 133 |
58 131 132
|
mp2an |
⊢ ( ℤ≥ ‘ 1 ) ∈ ran ℤ≥ |
| 134 |
130 133
|
eqeltri |
⊢ ℕ ∈ ran ℤ≥ |
| 135 |
|
uzin2 |
⊢ ( ( 𝑘 ∈ ran ℤ≥ ∧ ℕ ∈ ran ℤ≥ ) → ( 𝑘 ∩ ℕ ) ∈ ran ℤ≥ ) |
| 136 |
134 135
|
mpan2 |
⊢ ( 𝑘 ∈ ran ℤ≥ → ( 𝑘 ∩ ℕ ) ∈ ran ℤ≥ ) |
| 137 |
|
uzn0 |
⊢ ( ( 𝑘 ∩ ℕ ) ∈ ran ℤ≥ → ( 𝑘 ∩ ℕ ) ≠ ∅ ) |
| 138 |
136 137
|
syl |
⊢ ( 𝑘 ∈ ran ℤ≥ → ( 𝑘 ∩ ℕ ) ≠ ∅ ) |
| 139 |
|
n0 |
⊢ ( ( 𝑘 ∩ ℕ ) ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ ( 𝑘 ∩ ℕ ) ) |
| 140 |
138 139
|
sylib |
⊢ ( 𝑘 ∈ ran ℤ≥ → ∃ 𝑦 𝑦 ∈ ( 𝑘 ∩ ℕ ) ) |
| 141 |
|
fnfun |
⊢ ( 𝐹 Fn ℕ → Fun 𝐹 ) |
| 142 |
|
inss2 |
⊢ ( 𝑘 ∩ ℕ ) ⊆ ℕ |
| 143 |
|
fndm |
⊢ ( 𝐹 Fn ℕ → dom 𝐹 = ℕ ) |
| 144 |
142 143
|
sseqtrrid |
⊢ ( 𝐹 Fn ℕ → ( 𝑘 ∩ ℕ ) ⊆ dom 𝐹 ) |
| 145 |
|
funfvima2 |
⊢ ( ( Fun 𝐹 ∧ ( 𝑘 ∩ ℕ ) ⊆ dom 𝐹 ) → ( 𝑦 ∈ ( 𝑘 ∩ ℕ ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ) ) |
| 146 |
141 144 145
|
syl2anc |
⊢ ( 𝐹 Fn ℕ → ( 𝑦 ∈ ( 𝑘 ∩ ℕ ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ) ) |
| 147 |
|
ne0i |
⊢ ( ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) → ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ≠ ∅ ) |
| 148 |
146 147
|
syl6 |
⊢ ( 𝐹 Fn ℕ → ( 𝑦 ∈ ( 𝑘 ∩ ℕ ) → ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ≠ ∅ ) ) |
| 149 |
148
|
exlimdv |
⊢ ( 𝐹 Fn ℕ → ( ∃ 𝑦 𝑦 ∈ ( 𝑘 ∩ ℕ ) → ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ≠ ∅ ) ) |
| 150 |
140 149
|
syl5 |
⊢ ( 𝐹 Fn ℕ → ( 𝑘 ∈ ran ℤ≥ → ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ≠ ∅ ) ) |
| 151 |
150
|
imp |
⊢ ( ( 𝐹 Fn ℕ ∧ 𝑘 ∈ ran ℤ≥ ) → ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ≠ ∅ ) |
| 152 |
|
ssn0 |
⊢ ( ( ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ⊆ ( 𝐹 “ 𝑘 ) ∧ ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ≠ ∅ ) → ( 𝐹 “ 𝑘 ) ≠ ∅ ) |
| 153 |
129 151 152
|
sylancr |
⊢ ( ( 𝐹 Fn ℕ ∧ 𝑘 ∈ ran ℤ≥ ) → ( 𝐹 “ 𝑘 ) ≠ ∅ ) |
| 154 |
|
ssn0 |
⊢ ( ( ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑟 ∧ ( 𝐹 “ 𝑘 ) ≠ ∅ ) → ∩ 𝑟 ≠ ∅ ) |
| 155 |
154
|
expcom |
⊢ ( ( 𝐹 “ 𝑘 ) ≠ ∅ → ( ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑟 → ∩ 𝑟 ≠ ∅ ) ) |
| 156 |
153 155
|
syl |
⊢ ( ( 𝐹 Fn ℕ ∧ 𝑘 ∈ ran ℤ≥ ) → ( ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑟 → ∩ 𝑟 ≠ ∅ ) ) |
| 157 |
156
|
rexlimdva |
⊢ ( 𝐹 Fn ℕ → ( ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑟 → ∩ 𝑟 ≠ ∅ ) ) |
| 158 |
126 157
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑟 → ∩ 𝑟 ≠ ∅ ) ) |
| 159 |
158
|
adantr |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ 𝑟 ∈ Fin ) ) → ( ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑟 → ∩ 𝑟 ≠ ∅ ) ) |
| 160 |
125 159
|
mpd |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ 𝑟 ∈ Fin ) ) → ∩ 𝑟 ≠ ∅ ) |
| 161 |
160
|
necomd |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ 𝑟 ∈ Fin ) ) → ∅ ≠ ∩ 𝑟 ) |
| 162 |
161
|
neneqd |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ 𝑟 ∈ Fin ) ) → ¬ ∅ = ∩ 𝑟 ) |
| 163 |
31 162
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∩ Fin ) ) → ¬ ∅ = ∩ 𝑟 ) |
| 164 |
163
|
nrexdv |
⊢ ( 𝜑 → ¬ ∃ 𝑟 ∈ ( 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∩ Fin ) ∅ = ∩ 𝑟 ) |
| 165 |
|
0ex |
⊢ ∅ ∈ V |
| 166 |
|
zex |
⊢ ℤ ∈ V |
| 167 |
166
|
pwex |
⊢ 𝒫 ℤ ∈ V |
| 168 |
|
frn |
⊢ ( ℤ≥ : ℤ ⟶ 𝒫 ℤ → ran ℤ≥ ⊆ 𝒫 ℤ ) |
| 169 |
56 168
|
ax-mp |
⊢ ran ℤ≥ ⊆ 𝒫 ℤ |
| 170 |
167 169
|
ssexi |
⊢ ran ℤ≥ ∈ V |
| 171 |
170
|
abrexex |
⊢ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∈ V |
| 172 |
|
elfi |
⊢ ( ( ∅ ∈ V ∧ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∈ V ) → ( ∅ ∈ ( fi ‘ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) ↔ ∃ 𝑟 ∈ ( 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∩ Fin ) ∅ = ∩ 𝑟 ) ) |
| 173 |
165 171 172
|
mp2an |
⊢ ( ∅ ∈ ( fi ‘ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) ↔ ∃ 𝑟 ∈ ( 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∩ Fin ) ∅ = ∩ 𝑟 ) |
| 174 |
164 173
|
sylnibr |
⊢ ( 𝜑 → ¬ ∅ ∈ ( fi ‘ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) ) |
| 175 |
|
cmptop |
⊢ ( 𝐽 ∈ Comp → 𝐽 ∈ Top ) |
| 176 |
|
cmpfi |
⊢ ( 𝐽 ∈ Top → ( 𝐽 ∈ Comp ↔ ∀ 𝑚 ∈ 𝒫 ( Clsd ‘ 𝐽 ) ( ¬ ∅ ∈ ( fi ‘ 𝑚 ) → ∩ 𝑚 ≠ ∅ ) ) ) |
| 177 |
175 176
|
syl |
⊢ ( 𝐽 ∈ Comp → ( 𝐽 ∈ Comp ↔ ∀ 𝑚 ∈ 𝒫 ( Clsd ‘ 𝐽 ) ( ¬ ∅ ∈ ( fi ‘ 𝑚 ) → ∩ 𝑚 ≠ ∅ ) ) ) |
| 178 |
177
|
ibi |
⊢ ( 𝐽 ∈ Comp → ∀ 𝑚 ∈ 𝒫 ( Clsd ‘ 𝐽 ) ( ¬ ∅ ∈ ( fi ‘ 𝑚 ) → ∩ 𝑚 ≠ ∅ ) ) |
| 179 |
|
fveq2 |
⊢ ( 𝑚 = { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } → ( fi ‘ 𝑚 ) = ( fi ‘ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) ) |
| 180 |
179
|
eleq2d |
⊢ ( 𝑚 = { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } → ( ∅ ∈ ( fi ‘ 𝑚 ) ↔ ∅ ∈ ( fi ‘ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) ) ) |
| 181 |
180
|
notbid |
⊢ ( 𝑚 = { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } → ( ¬ ∅ ∈ ( fi ‘ 𝑚 ) ↔ ¬ ∅ ∈ ( fi ‘ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) ) ) |
| 182 |
|
inteq |
⊢ ( 𝑚 = { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } → ∩ 𝑚 = ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) |
| 183 |
182
|
neeq1d |
⊢ ( 𝑚 = { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } → ( ∩ 𝑚 ≠ ∅ ↔ ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ≠ ∅ ) ) |
| 184 |
|
n0 |
⊢ ( ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) |
| 185 |
183 184
|
bitrdi |
⊢ ( 𝑚 = { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } → ( ∩ 𝑚 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) ) |
| 186 |
181 185
|
imbi12d |
⊢ ( 𝑚 = { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } → ( ( ¬ ∅ ∈ ( fi ‘ 𝑚 ) → ∩ 𝑚 ≠ ∅ ) ↔ ( ¬ ∅ ∈ ( fi ‘ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) → ∃ 𝑦 𝑦 ∈ ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) ) ) |
| 187 |
186
|
rspccv |
⊢ ( ∀ 𝑚 ∈ 𝒫 ( Clsd ‘ 𝐽 ) ( ¬ ∅ ∈ ( fi ‘ 𝑚 ) → ∩ 𝑚 ≠ ∅ ) → ( { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∈ 𝒫 ( Clsd ‘ 𝐽 ) → ( ¬ ∅ ∈ ( fi ‘ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) → ∃ 𝑦 𝑦 ∈ ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) ) ) |
| 188 |
178 187
|
syl |
⊢ ( 𝐽 ∈ Comp → ( { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∈ 𝒫 ( Clsd ‘ 𝐽 ) → ( ¬ ∅ ∈ ( fi ‘ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) → ∃ 𝑦 𝑦 ∈ ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) ) ) |
| 189 |
3 25 174 188
|
syl3c |
⊢ ( 𝜑 → ∃ 𝑦 𝑦 ∈ ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) |
| 190 |
|
lmrel |
⊢ Rel ( ⇝𝑡 ‘ 𝐽 ) |
| 191 |
|
r19.23v |
⊢ ( ∀ 𝑢 ∈ ran ℤ≥ ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑦 ∈ 𝑘 ) ↔ ( ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑦 ∈ 𝑘 ) ) |
| 192 |
191
|
albii |
⊢ ( ∀ 𝑘 ∀ 𝑢 ∈ ran ℤ≥ ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑦 ∈ 𝑘 ) ↔ ∀ 𝑘 ( ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑦 ∈ 𝑘 ) ) |
| 193 |
|
fvex |
⊢ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∈ V |
| 194 |
|
eleq2 |
⊢ ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → ( 𝑦 ∈ 𝑘 ↔ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) |
| 195 |
193 194
|
ceqsalv |
⊢ ( ∀ 𝑘 ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑦 ∈ 𝑘 ) ↔ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) |
| 196 |
195
|
ralbii |
⊢ ( ∀ 𝑢 ∈ ran ℤ≥ ∀ 𝑘 ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑦 ∈ 𝑘 ) ↔ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) |
| 197 |
|
ralcom4 |
⊢ ( ∀ 𝑢 ∈ ran ℤ≥ ∀ 𝑘 ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑦 ∈ 𝑘 ) ↔ ∀ 𝑘 ∀ 𝑢 ∈ ran ℤ≥ ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑦 ∈ 𝑘 ) ) |
| 198 |
196 197
|
bitr3i |
⊢ ( ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ↔ ∀ 𝑘 ∀ 𝑢 ∈ ran ℤ≥ ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑦 ∈ 𝑘 ) ) |
| 199 |
|
vex |
⊢ 𝑦 ∈ V |
| 200 |
199
|
elintab |
⊢ ( 𝑦 ∈ ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ↔ ∀ 𝑘 ( ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑦 ∈ 𝑘 ) ) |
| 201 |
192 198 200
|
3bitr4i |
⊢ ( ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ↔ 𝑦 ∈ ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) |
| 202 |
|
eqid |
⊢ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) |
| 203 |
|
imaeq2 |
⊢ ( 𝑢 = ℕ → ( 𝐹 “ 𝑢 ) = ( 𝐹 “ ℕ ) ) |
| 204 |
203
|
fveq2d |
⊢ ( 𝑢 = ℕ → ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) ) |
| 205 |
204
|
rspceeqv |
⊢ ( ( ℕ ∈ ran ℤ≥ ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) ) → ∃ 𝑢 ∈ ran ℤ≥ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) |
| 206 |
134 202 205
|
mp2an |
⊢ ∃ 𝑢 ∈ ran ℤ≥ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) |
| 207 |
|
fvex |
⊢ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) ∈ V |
| 208 |
|
eqeq1 |
⊢ ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) → ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ↔ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) |
| 209 |
208
|
rexbidv |
⊢ ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) → ( ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ↔ ∃ 𝑢 ∈ ran ℤ≥ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) |
| 210 |
207 209
|
elab |
⊢ ( ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) ∈ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ↔ ∃ 𝑢 ∈ ran ℤ≥ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) |
| 211 |
206 210
|
mpbir |
⊢ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) ∈ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } |
| 212 |
|
intss1 |
⊢ ( ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) ∈ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } → ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ⊆ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) ) |
| 213 |
211 212
|
ax-mp |
⊢ ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ⊆ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) |
| 214 |
|
imassrn |
⊢ ( 𝐹 “ ℕ ) ⊆ ran 𝐹 |
| 215 |
214 14
|
sstrid |
⊢ ( 𝜑 → ( 𝐹 “ ℕ ) ⊆ ∪ 𝐽 ) |
| 216 |
16
|
clsss3 |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐹 “ ℕ ) ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) ⊆ ∪ 𝐽 ) |
| 217 |
9 215 216
|
syl2anc |
⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) ⊆ ∪ 𝐽 ) |
| 218 |
217 13
|
sseqtrrd |
⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) ⊆ 𝑋 ) |
| 219 |
213 218
|
sstrid |
⊢ ( 𝜑 → ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ⊆ 𝑋 ) |
| 220 |
219
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) → 𝑦 ∈ 𝑋 ) |
| 221 |
201 220
|
sylan2b |
⊢ ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → 𝑦 ∈ 𝑋 ) |
| 222 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 223 |
130 7 222
|
iscau3 |
⊢ ( 𝜑 → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ) ) ) ) |
| 224 |
4 223
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ) ) ) |
| 225 |
224
|
simprd |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ℝ+ ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ) ) |
| 226 |
|
simp3 |
⊢ ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ) |
| 227 |
226
|
ralimi |
⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ) |
| 228 |
227
|
reximi |
⊢ ( ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ) → ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ) |
| 229 |
228
|
ralimi |
⊢ ( ∀ 𝑦 ∈ ℝ+ ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ) → ∀ 𝑦 ∈ ℝ+ ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ) |
| 230 |
225 229
|
syl |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ℝ+ ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ) |
| 231 |
230
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∀ 𝑦 ∈ ℝ+ ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ) |
| 232 |
|
rphalfcl |
⊢ ( 𝑟 ∈ ℝ+ → ( 𝑟 / 2 ) ∈ ℝ+ ) |
| 233 |
|
breq2 |
⊢ ( 𝑦 = ( 𝑟 / 2 ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ) ) |
| 234 |
233
|
2ralbidv |
⊢ ( 𝑦 = ( 𝑟 / 2 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ) ) |
| 235 |
234
|
rexbidv |
⊢ ( 𝑦 = ( 𝑟 / 2 ) → ( ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ↔ ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ) ) |
| 236 |
235
|
rspccva |
⊢ ( ( ∀ 𝑦 ∈ ℝ+ ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ∧ ( 𝑟 / 2 ) ∈ ℝ+ ) → ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ) |
| 237 |
231 232 236
|
syl2an |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ) |
| 238 |
5
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
| 239 |
238
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → Fun 𝐹 ) |
| 240 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → 𝐽 ∈ Top ) |
| 241 |
|
imassrn |
⊢ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ⊆ ran 𝐹 |
| 242 |
241 14
|
sstrid |
⊢ ( 𝜑 → ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ⊆ ∪ 𝐽 ) |
| 243 |
242
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ⊆ ∪ 𝐽 ) |
| 244 |
|
nnz |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℤ ) |
| 245 |
|
fnfvelrn |
⊢ ( ( ℤ≥ Fn ℤ ∧ 𝑚 ∈ ℤ ) → ( ℤ≥ ‘ 𝑚 ) ∈ ran ℤ≥ ) |
| 246 |
58 244 245
|
sylancr |
⊢ ( 𝑚 ∈ ℕ → ( ℤ≥ ‘ 𝑚 ) ∈ ran ℤ≥ ) |
| 247 |
246
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ( ℤ≥ ‘ 𝑚 ) ∈ ran ℤ≥ ) |
| 248 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) |
| 249 |
|
imaeq2 |
⊢ ( 𝑢 = ( ℤ≥ ‘ 𝑚 ) → ( 𝐹 “ 𝑢 ) = ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) |
| 250 |
249
|
fveq2d |
⊢ ( 𝑢 = ( ℤ≥ ‘ 𝑚 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ) |
| 251 |
250
|
eleq2d |
⊢ ( 𝑢 = ( ℤ≥ ‘ 𝑚 ) → ( 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ↔ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ) ) |
| 252 |
251
|
rspcv |
⊢ ( ( ℤ≥ ‘ 𝑚 ) ∈ ran ℤ≥ → ( ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ) ) |
| 253 |
247 248 252
|
sylc |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ) |
| 254 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 255 |
221
|
adantr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → 𝑦 ∈ 𝑋 ) |
| 256 |
232
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ( 𝑟 / 2 ) ∈ ℝ+ ) |
| 257 |
256
|
rpxrd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ( 𝑟 / 2 ) ∈ ℝ* ) |
| 258 |
1
|
blopn |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ ( 𝑟 / 2 ) ∈ ℝ* ) → ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∈ 𝐽 ) |
| 259 |
254 255 257 258
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∈ 𝐽 ) |
| 260 |
|
blcntr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ ( 𝑟 / 2 ) ∈ ℝ+ ) → 𝑦 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) |
| 261 |
254 255 256 260
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → 𝑦 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) |
| 262 |
16
|
clsndisj |
⊢ ( ( ( 𝐽 ∈ Top ∧ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ⊆ ∪ 𝐽 ∧ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ) ∧ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) → ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ≠ ∅ ) |
| 263 |
240 243 253 259 261 262
|
syl32anc |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ≠ ∅ ) |
| 264 |
|
n0 |
⊢ ( ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ≠ ∅ ↔ ∃ 𝑛 𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ) |
| 265 |
|
inss2 |
⊢ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ⊆ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) |
| 266 |
265
|
sseli |
⊢ ( 𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) → 𝑛 ∈ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) |
| 267 |
|
fvelima |
⊢ ( ( Fun 𝐹 ∧ 𝑛 ∈ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐹 ‘ 𝑘 ) = 𝑛 ) |
| 268 |
266 267
|
sylan2 |
⊢ ( ( Fun 𝐹 ∧ 𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐹 ‘ 𝑘 ) = 𝑛 ) |
| 269 |
|
inss1 |
⊢ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ⊆ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) |
| 270 |
269
|
sseli |
⊢ ( 𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) → 𝑛 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) |
| 271 |
270
|
adantl |
⊢ ( ( Fun 𝐹 ∧ 𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ) → 𝑛 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) |
| 272 |
|
eleq1a |
⊢ ( 𝑛 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) → ( ( 𝐹 ‘ 𝑘 ) = 𝑛 → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) |
| 273 |
271 272
|
syl |
⊢ ( ( Fun 𝐹 ∧ 𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ) → ( ( 𝐹 ‘ 𝑘 ) = 𝑛 → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) |
| 274 |
273
|
reximdv |
⊢ ( ( Fun 𝐹 ∧ 𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ) → ( ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐹 ‘ 𝑘 ) = 𝑛 → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) |
| 275 |
268 274
|
mpd |
⊢ ( ( Fun 𝐹 ∧ 𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) |
| 276 |
275
|
ex |
⊢ ( Fun 𝐹 → ( 𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) |
| 277 |
276
|
exlimdv |
⊢ ( Fun 𝐹 → ( ∃ 𝑛 𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) |
| 278 |
264 277
|
biimtrid |
⊢ ( Fun 𝐹 → ( ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ≠ ∅ → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) |
| 279 |
239 263 278
|
sylc |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) |
| 280 |
|
r19.29 |
⊢ ( ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ∧ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) |
| 281 |
|
uznnssnn |
⊢ ( 𝑚 ∈ ℕ → ( ℤ≥ ‘ 𝑚 ) ⊆ ℕ ) |
| 282 |
281
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ( ℤ≥ ‘ 𝑚 ) ⊆ ℕ ) |
| 283 |
|
simprlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) |
| 284 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 285 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝑟 ∈ ℝ+ ) |
| 286 |
285 232
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( 𝑟 / 2 ) ∈ ℝ+ ) |
| 287 |
286
|
rpxrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( 𝑟 / 2 ) ∈ ℝ* ) |
| 288 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝑦 ∈ 𝑋 ) |
| 289 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝐹 : ℕ ⟶ 𝑋 ) |
| 290 |
|
eluznn |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) → 𝑘 ∈ ℕ ) |
| 291 |
290
|
ad2ant2lr |
⊢ ( ( ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) → 𝑘 ∈ ℕ ) |
| 292 |
291
|
ad2ant2lr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝑘 ∈ ℕ ) |
| 293 |
289 292
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
| 294 |
|
elbl3 |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑟 / 2 ) ∈ ℝ* ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < ( 𝑟 / 2 ) ) ) |
| 295 |
284 287 288 293 294
|
syl22anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < ( 𝑟 / 2 ) ) ) |
| 296 |
283 295
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < ( 𝑟 / 2 ) ) |
| 297 |
2
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 298 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) |
| 299 |
|
eluznn |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑛 ∈ ℕ ) |
| 300 |
292 298 299
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝑛 ∈ ℕ ) |
| 301 |
289 300
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ) |
| 302 |
|
metcl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) |
| 303 |
297 293 301 302
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) |
| 304 |
|
metcl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ∈ ℝ ) |
| 305 |
297 293 288 304
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ∈ ℝ ) |
| 306 |
286
|
rpred |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( 𝑟 / 2 ) ∈ ℝ ) |
| 307 |
|
lt2add |
⊢ ( ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ∈ ℝ ) ∧ ( ( 𝑟 / 2 ) ∈ ℝ ∧ ( 𝑟 / 2 ) ∈ ℝ ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < ( 𝑟 / 2 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) < ( ( 𝑟 / 2 ) + ( 𝑟 / 2 ) ) ) ) |
| 308 |
303 305 306 306 307
|
syl22anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < ( 𝑟 / 2 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) < ( ( 𝑟 / 2 ) + ( 𝑟 / 2 ) ) ) ) |
| 309 |
296 308
|
mpan2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) < ( ( 𝑟 / 2 ) + ( 𝑟 / 2 ) ) ) ) |
| 310 |
285
|
rpcnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝑟 ∈ ℂ ) |
| 311 |
310
|
2halvesd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( 𝑟 / 2 ) + ( 𝑟 / 2 ) ) = 𝑟 ) |
| 312 |
311
|
breq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) < ( ( 𝑟 / 2 ) + ( 𝑟 / 2 ) ) ↔ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) < 𝑟 ) ) |
| 313 |
309 312
|
sylibd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) < 𝑟 ) ) |
| 314 |
|
mettri2 |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) ≤ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) ) |
| 315 |
297 293 301 288 314
|
syl13anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) ≤ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) ) |
| 316 |
|
metcl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) ∈ ℝ ) |
| 317 |
297 301 288 316
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) ∈ ℝ ) |
| 318 |
303 305
|
readdcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) ∈ ℝ ) |
| 319 |
285
|
rpred |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝑟 ∈ ℝ ) |
| 320 |
|
lelttr |
⊢ ( ( ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) ∈ ℝ ∧ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) ∈ ℝ ∧ 𝑟 ∈ ℝ ) → ( ( ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) ≤ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) ∧ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) < 𝑟 ) → ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
| 321 |
317 318 319 320
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) ≤ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) ∧ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) < 𝑟 ) → ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
| 322 |
315 321
|
mpand |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) < 𝑟 → ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
| 323 |
313 322
|
syld |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) → ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
| 324 |
323
|
anassrs |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) → ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
| 325 |
324
|
ralimdva |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) → ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
| 326 |
325
|
expr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) → ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) ) |
| 327 |
326
|
com23 |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) ) |
| 328 |
327
|
impd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
| 329 |
328
|
reximdva |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ( ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
| 330 |
|
ssrexv |
⊢ ( ( ℤ≥ ‘ 𝑚 ) ⊆ ℕ → ( ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 → ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
| 331 |
282 329 330
|
sylsyld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ( ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) → ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
| 332 |
221 331
|
syldanl |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ( ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) → ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
| 333 |
280 332
|
syl5 |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ( ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ∧ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) → ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
| 334 |
279 333
|
mpan2d |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) → ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
| 335 |
334
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑚 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) → ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
| 336 |
335
|
rexlimdva |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ 𝑟 ∈ ℝ+ ) → ( ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) → ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
| 337 |
237 336
|
mpd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) |
| 338 |
337
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∀ 𝑟 ∈ ℝ+ ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) |
| 339 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑛 ) ) |
| 340 |
1 7 130 222 339 5
|
lmmbrf |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ↔ ( 𝑦 ∈ 𝑋 ∧ ∀ 𝑟 ∈ ℝ+ ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) ) |
| 341 |
340
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ↔ ( 𝑦 ∈ 𝑋 ∧ ∀ 𝑟 ∈ ℝ+ ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) ) |
| 342 |
221 338 341
|
mpbir2and |
⊢ ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) |
| 343 |
201 342
|
sylan2br |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) |
| 344 |
|
releldm |
⊢ ( ( Rel ( ⇝𝑡 ‘ 𝐽 ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
| 345 |
190 343 344
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
| 346 |
189 345
|
exlimddv |
⊢ ( 𝜑 → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |