Step |
Hyp |
Ref |
Expression |
1 |
|
heibor.1 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
2 |
|
heibor.3 |
⊢ 𝐾 = { 𝑢 ∣ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 } |
3 |
|
heiborlem1.4 |
⊢ 𝐵 ∈ V |
4 |
|
sseq1 |
⊢ ( 𝑢 = 𝐵 → ( 𝑢 ⊆ ∪ 𝑣 ↔ 𝐵 ⊆ ∪ 𝑣 ) ) |
5 |
4
|
rexbidv |
⊢ ( 𝑢 = 𝐵 → ( ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 ↔ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝐵 ⊆ ∪ 𝑣 ) ) |
6 |
5
|
notbid |
⊢ ( 𝑢 = 𝐵 → ( ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 ↔ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝐵 ⊆ ∪ 𝑣 ) ) |
7 |
3 6 2
|
elab2 |
⊢ ( 𝐵 ∈ 𝐾 ↔ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝐵 ⊆ ∪ 𝑣 ) |
8 |
7
|
con2bii |
⊢ ( ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝐵 ⊆ ∪ 𝑣 ↔ ¬ 𝐵 ∈ 𝐾 ) |
9 |
8
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝐵 ⊆ ∪ 𝑣 ↔ ∀ 𝑥 ∈ 𝐴 ¬ 𝐵 ∈ 𝐾 ) |
10 |
|
ralnex |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝐵 ∈ 𝐾 ↔ ¬ ∃ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐾 ) |
11 |
9 10
|
bitr2i |
⊢ ( ¬ ∃ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐾 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝐵 ⊆ ∪ 𝑣 ) |
12 |
|
unieq |
⊢ ( 𝑣 = ( 𝑡 ‘ 𝑥 ) → ∪ 𝑣 = ∪ ( 𝑡 ‘ 𝑥 ) ) |
13 |
12
|
sseq2d |
⊢ ( 𝑣 = ( 𝑡 ‘ 𝑥 ) → ( 𝐵 ⊆ ∪ 𝑣 ↔ 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) |
14 |
13
|
ac6sfi |
⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝐵 ⊆ ∪ 𝑣 ) → ∃ 𝑡 ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) |
15 |
14
|
ex |
⊢ ( 𝐴 ∈ Fin → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝐵 ⊆ ∪ 𝑣 → ∃ 𝑡 ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝐵 ⊆ ∪ 𝑣 → ∃ 𝑡 ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) ) |
17 |
|
sseq1 |
⊢ ( 𝑢 = 𝐶 → ( 𝑢 ⊆ ∪ 𝑣 ↔ 𝐶 ⊆ ∪ 𝑣 ) ) |
18 |
17
|
rexbidv |
⊢ ( 𝑢 = 𝐶 → ( ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 ↔ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝐶 ⊆ ∪ 𝑣 ) ) |
19 |
18
|
notbid |
⊢ ( 𝑢 = 𝐶 → ( ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 ↔ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝐶 ⊆ ∪ 𝑣 ) ) |
20 |
19 2
|
elab2g |
⊢ ( 𝐶 ∈ 𝐾 → ( 𝐶 ∈ 𝐾 ↔ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝐶 ⊆ ∪ 𝑣 ) ) |
21 |
20
|
ibi |
⊢ ( 𝐶 ∈ 𝐾 → ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝐶 ⊆ ∪ 𝑣 ) |
22 |
|
frn |
⊢ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) → ran 𝑡 ⊆ ( 𝒫 𝑈 ∩ Fin ) ) |
23 |
22
|
ad2antrl |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) → ran 𝑡 ⊆ ( 𝒫 𝑈 ∩ Fin ) ) |
24 |
|
inss1 |
⊢ ( 𝒫 𝑈 ∩ Fin ) ⊆ 𝒫 𝑈 |
25 |
23 24
|
sstrdi |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) → ran 𝑡 ⊆ 𝒫 𝑈 ) |
26 |
|
sspwuni |
⊢ ( ran 𝑡 ⊆ 𝒫 𝑈 ↔ ∪ ran 𝑡 ⊆ 𝑈 ) |
27 |
25 26
|
sylib |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) → ∪ ran 𝑡 ⊆ 𝑈 ) |
28 |
|
vex |
⊢ 𝑡 ∈ V |
29 |
28
|
rnex |
⊢ ran 𝑡 ∈ V |
30 |
29
|
uniex |
⊢ ∪ ran 𝑡 ∈ V |
31 |
30
|
elpw |
⊢ ( ∪ ran 𝑡 ∈ 𝒫 𝑈 ↔ ∪ ran 𝑡 ⊆ 𝑈 ) |
32 |
27 31
|
sylibr |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) → ∪ ran 𝑡 ∈ 𝒫 𝑈 ) |
33 |
|
ffn |
⊢ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) → 𝑡 Fn 𝐴 ) |
34 |
33
|
ad2antrl |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) → 𝑡 Fn 𝐴 ) |
35 |
|
dffn4 |
⊢ ( 𝑡 Fn 𝐴 ↔ 𝑡 : 𝐴 –onto→ ran 𝑡 ) |
36 |
34 35
|
sylib |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) → 𝑡 : 𝐴 –onto→ ran 𝑡 ) |
37 |
|
fofi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝑡 : 𝐴 –onto→ ran 𝑡 ) → ran 𝑡 ∈ Fin ) |
38 |
36 37
|
syldan |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) → ran 𝑡 ∈ Fin ) |
39 |
|
inss2 |
⊢ ( 𝒫 𝑈 ∩ Fin ) ⊆ Fin |
40 |
23 39
|
sstrdi |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) → ran 𝑡 ⊆ Fin ) |
41 |
|
unifi |
⊢ ( ( ran 𝑡 ∈ Fin ∧ ran 𝑡 ⊆ Fin ) → ∪ ran 𝑡 ∈ Fin ) |
42 |
38 40 41
|
syl2anc |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) → ∪ ran 𝑡 ∈ Fin ) |
43 |
32 42
|
elind |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) → ∪ ran 𝑡 ∈ ( 𝒫 𝑈 ∩ Fin ) ) |
44 |
43
|
adantlr |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) → ∪ ran 𝑡 ∈ ( 𝒫 𝑈 ∩ Fin ) ) |
45 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) → 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
46 |
|
fnfvelrn |
⊢ ( ( 𝑡 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑡 ‘ 𝑥 ) ∈ ran 𝑡 ) |
47 |
33 46
|
sylan |
⊢ ( ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑡 ‘ 𝑥 ) ∈ ran 𝑡 ) |
48 |
47
|
adantll |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑡 ‘ 𝑥 ) ∈ ran 𝑡 ) |
49 |
|
elssuni |
⊢ ( ( 𝑡 ‘ 𝑥 ) ∈ ran 𝑡 → ( 𝑡 ‘ 𝑥 ) ⊆ ∪ ran 𝑡 ) |
50 |
|
uniss |
⊢ ( ( 𝑡 ‘ 𝑥 ) ⊆ ∪ ran 𝑡 → ∪ ( 𝑡 ‘ 𝑥 ) ⊆ ∪ ∪ ran 𝑡 ) |
51 |
48 49 50
|
3syl |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ) ∧ 𝑥 ∈ 𝐴 ) → ∪ ( 𝑡 ‘ 𝑥 ) ⊆ ∪ ∪ ran 𝑡 ) |
52 |
|
sstr2 |
⊢ ( 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) → ( ∪ ( 𝑡 ‘ 𝑥 ) ⊆ ∪ ∪ ran 𝑡 → 𝐵 ⊆ ∪ ∪ ran 𝑡 ) ) |
53 |
51 52
|
syl5com |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) → 𝐵 ⊆ ∪ ∪ ran 𝑡 ) ) |
54 |
53
|
ralimdva |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ) → ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) → ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ∪ ran 𝑡 ) ) |
55 |
54
|
impr |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) → ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ∪ ran 𝑡 ) |
56 |
|
iunss |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ∪ ran 𝑡 ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ∪ ran 𝑡 ) |
57 |
55 56
|
sylibr |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ∪ ran 𝑡 ) |
58 |
57
|
adantlr |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ∪ ran 𝑡 ) |
59 |
45 58
|
sstrd |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) → 𝐶 ⊆ ∪ ∪ ran 𝑡 ) |
60 |
|
unieq |
⊢ ( 𝑣 = ∪ ran 𝑡 → ∪ 𝑣 = ∪ ∪ ran 𝑡 ) |
61 |
60
|
sseq2d |
⊢ ( 𝑣 = ∪ ran 𝑡 → ( 𝐶 ⊆ ∪ 𝑣 ↔ 𝐶 ⊆ ∪ ∪ ran 𝑡 ) ) |
62 |
61
|
rspcev |
⊢ ( ( ∪ ran 𝑡 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ 𝐶 ⊆ ∪ ∪ ran 𝑡 ) → ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝐶 ⊆ ∪ 𝑣 ) |
63 |
44 59 62
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝐶 ⊆ ∪ 𝑣 ) |
64 |
21 63
|
nsyl3 |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) → ¬ 𝐶 ∈ 𝐾 ) |
65 |
64
|
ex |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ( ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) → ¬ 𝐶 ∈ 𝐾 ) ) |
66 |
65
|
exlimdv |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ( ∃ 𝑡 ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) → ¬ 𝐶 ∈ 𝐾 ) ) |
67 |
16 66
|
syld |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝐵 ⊆ ∪ 𝑣 → ¬ 𝐶 ∈ 𝐾 ) ) |
68 |
11 67
|
syl5bi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ( ¬ ∃ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐾 → ¬ 𝐶 ∈ 𝐾 ) ) |
69 |
68
|
con4d |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ( 𝐶 ∈ 𝐾 → ∃ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐾 ) ) |
70 |
69
|
3impia |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝐶 ∈ 𝐾 ) → ∃ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐾 ) |