Step |
Hyp |
Ref |
Expression |
1 |
|
heibor.1 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
2 |
|
heibor.3 |
⊢ 𝐾 = { 𝑢 ∣ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 } |
3 |
|
heibor.4 |
⊢ 𝐺 = { 〈 𝑦 , 𝑛 〉 ∣ ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ∧ ( 𝑦 𝐵 𝑛 ) ∈ 𝐾 ) } |
4 |
|
heibor.5 |
⊢ 𝐵 = ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) |
5 |
|
heibor.6 |
⊢ ( 𝜑 → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
6 |
|
heibor.7 |
⊢ ( 𝜑 → 𝐹 : ℕ0 ⟶ ( 𝒫 𝑋 ∩ Fin ) ) |
7 |
|
heibor.8 |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ( 𝑦 𝐵 𝑛 ) ) |
8 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
9 |
|
inss2 |
⊢ ( 𝒫 𝑋 ∩ Fin ) ⊆ Fin |
10 |
|
ffvelrn |
⊢ ( ( 𝐹 : ℕ0 ⟶ ( 𝒫 𝑋 ∩ Fin ) ∧ 0 ∈ ℕ0 ) → ( 𝐹 ‘ 0 ) ∈ ( 𝒫 𝑋 ∩ Fin ) ) |
11 |
9 10
|
sselid |
⊢ ( ( 𝐹 : ℕ0 ⟶ ( 𝒫 𝑋 ∩ Fin ) ∧ 0 ∈ ℕ0 ) → ( 𝐹 ‘ 0 ) ∈ Fin ) |
12 |
6 8 11
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) ∈ Fin ) |
13 |
|
fveq2 |
⊢ ( 𝑛 = 0 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 0 ) ) |
14 |
|
oveq2 |
⊢ ( 𝑛 = 0 → ( 𝑦 𝐵 𝑛 ) = ( 𝑦 𝐵 0 ) ) |
15 |
13 14
|
iuneq12d |
⊢ ( 𝑛 = 0 → ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ( 𝑦 𝐵 𝑛 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 0 ) ( 𝑦 𝐵 0 ) ) |
16 |
15
|
eqeq2d |
⊢ ( 𝑛 = 0 → ( 𝑋 = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ( 𝑦 𝐵 𝑛 ) ↔ 𝑋 = ∪ 𝑦 ∈ ( 𝐹 ‘ 0 ) ( 𝑦 𝐵 0 ) ) ) |
17 |
16
|
rspccva |
⊢ ( ( ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ( 𝑦 𝐵 𝑛 ) ∧ 0 ∈ ℕ0 ) → 𝑋 = ∪ 𝑦 ∈ ( 𝐹 ‘ 0 ) ( 𝑦 𝐵 0 ) ) |
18 |
7 8 17
|
sylancl |
⊢ ( 𝜑 → 𝑋 = ∪ 𝑦 ∈ ( 𝐹 ‘ 0 ) ( 𝑦 𝐵 0 ) ) |
19 |
|
eqimss |
⊢ ( 𝑋 = ∪ 𝑦 ∈ ( 𝐹 ‘ 0 ) ( 𝑦 𝐵 0 ) → 𝑋 ⊆ ∪ 𝑦 ∈ ( 𝐹 ‘ 0 ) ( 𝑦 𝐵 0 ) ) |
20 |
18 19
|
syl |
⊢ ( 𝜑 → 𝑋 ⊆ ∪ 𝑦 ∈ ( 𝐹 ‘ 0 ) ( 𝑦 𝐵 0 ) ) |
21 |
|
ovex |
⊢ ( 𝑦 𝐵 0 ) ∈ V |
22 |
1 2 21
|
heiborlem1 |
⊢ ( ( ( 𝐹 ‘ 0 ) ∈ Fin ∧ 𝑋 ⊆ ∪ 𝑦 ∈ ( 𝐹 ‘ 0 ) ( 𝑦 𝐵 0 ) ∧ 𝑋 ∈ 𝐾 ) → ∃ 𝑦 ∈ ( 𝐹 ‘ 0 ) ( 𝑦 𝐵 0 ) ∈ 𝐾 ) |
23 |
|
oveq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 𝐵 0 ) = ( 𝑥 𝐵 0 ) ) |
24 |
23
|
eleq1d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 𝐵 0 ) ∈ 𝐾 ↔ ( 𝑥 𝐵 0 ) ∈ 𝐾 ) ) |
25 |
24
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ ( 𝐹 ‘ 0 ) ( 𝑦 𝐵 0 ) ∈ 𝐾 ↔ ∃ 𝑥 ∈ ( 𝐹 ‘ 0 ) ( 𝑥 𝐵 0 ) ∈ 𝐾 ) |
26 |
22 25
|
sylib |
⊢ ( ( ( 𝐹 ‘ 0 ) ∈ Fin ∧ 𝑋 ⊆ ∪ 𝑦 ∈ ( 𝐹 ‘ 0 ) ( 𝑦 𝐵 0 ) ∧ 𝑋 ∈ 𝐾 ) → ∃ 𝑥 ∈ ( 𝐹 ‘ 0 ) ( 𝑥 𝐵 0 ) ∈ 𝐾 ) |
27 |
26
|
3expia |
⊢ ( ( ( 𝐹 ‘ 0 ) ∈ Fin ∧ 𝑋 ⊆ ∪ 𝑦 ∈ ( 𝐹 ‘ 0 ) ( 𝑦 𝐵 0 ) ) → ( 𝑋 ∈ 𝐾 → ∃ 𝑥 ∈ ( 𝐹 ‘ 0 ) ( 𝑥 𝐵 0 ) ∈ 𝐾 ) ) |
28 |
12 20 27
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐾 → ∃ 𝑥 ∈ ( 𝐹 ‘ 0 ) ( 𝑥 𝐵 0 ) ∈ 𝐾 ) ) |
29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) → ( 𝑋 ∈ 𝐾 → ∃ 𝑥 ∈ ( 𝐹 ‘ 0 ) ( 𝑥 𝐵 0 ) ∈ 𝐾 ) ) |
30 |
|
vex |
⊢ 𝑥 ∈ V |
31 |
|
c0ex |
⊢ 0 ∈ V |
32 |
1 2 3 30 31
|
heiborlem2 |
⊢ ( 𝑥 𝐺 0 ↔ ( 0 ∈ ℕ0 ∧ 𝑥 ∈ ( 𝐹 ‘ 0 ) ∧ ( 𝑥 𝐵 0 ) ∈ 𝐾 ) ) |
33 |
1 2 3 4 5 6 7
|
heiborlem3 |
⊢ ( 𝜑 → ∃ 𝑔 ∀ 𝑥 ∈ 𝐺 ( ( 𝑔 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑔 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) |
34 |
33
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ 𝑥 𝐺 0 ) → ∃ 𝑔 ∀ 𝑥 ∈ 𝐺 ( ( 𝑔 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑔 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) |
35 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ ( 𝑥 𝐺 0 ∧ ∀ 𝑥 ∈ 𝐺 ( ( 𝑔 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑔 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) ) → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
36 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ ( 𝑥 𝐺 0 ∧ ∀ 𝑥 ∈ 𝐺 ( ( 𝑔 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑔 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) ) → 𝐹 : ℕ0 ⟶ ( 𝒫 𝑋 ∩ Fin ) ) |
37 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ ( 𝑥 𝐺 0 ∧ ∀ 𝑥 ∈ 𝐺 ( ( 𝑔 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑔 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) ) → ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ( 𝑦 𝐵 𝑛 ) ) |
38 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ ( 𝑥 𝐺 0 ∧ ∀ 𝑥 ∈ 𝐺 ( ( 𝑔 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑔 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) ) → ∀ 𝑥 ∈ 𝐺 ( ( 𝑔 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑔 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) |
39 |
|
fveq2 |
⊢ ( 𝑥 = 𝑡 → ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑡 ) ) |
40 |
|
fveq2 |
⊢ ( 𝑥 = 𝑡 → ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑡 ) ) |
41 |
40
|
oveq1d |
⊢ ( 𝑥 = 𝑡 → ( ( 2nd ‘ 𝑥 ) + 1 ) = ( ( 2nd ‘ 𝑡 ) + 1 ) ) |
42 |
39 41
|
breq12d |
⊢ ( 𝑥 = 𝑡 → ( ( 𝑔 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ↔ ( 𝑔 ‘ 𝑡 ) 𝐺 ( ( 2nd ‘ 𝑡 ) + 1 ) ) ) |
43 |
|
fveq2 |
⊢ ( 𝑥 = 𝑡 → ( 𝐵 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑡 ) ) |
44 |
39 41
|
oveq12d |
⊢ ( 𝑥 = 𝑡 → ( ( 𝑔 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) = ( ( 𝑔 ‘ 𝑡 ) 𝐵 ( ( 2nd ‘ 𝑡 ) + 1 ) ) ) |
45 |
43 44
|
ineq12d |
⊢ ( 𝑥 = 𝑡 → ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑔 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) = ( ( 𝐵 ‘ 𝑡 ) ∩ ( ( 𝑔 ‘ 𝑡 ) 𝐵 ( ( 2nd ‘ 𝑡 ) + 1 ) ) ) ) |
46 |
45
|
eleq1d |
⊢ ( 𝑥 = 𝑡 → ( ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑔 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ↔ ( ( 𝐵 ‘ 𝑡 ) ∩ ( ( 𝑔 ‘ 𝑡 ) 𝐵 ( ( 2nd ‘ 𝑡 ) + 1 ) ) ) ∈ 𝐾 ) ) |
47 |
42 46
|
anbi12d |
⊢ ( 𝑥 = 𝑡 → ( ( ( 𝑔 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑔 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ↔ ( ( 𝑔 ‘ 𝑡 ) 𝐺 ( ( 2nd ‘ 𝑡 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑡 ) ∩ ( ( 𝑔 ‘ 𝑡 ) 𝐵 ( ( 2nd ‘ 𝑡 ) + 1 ) ) ) ∈ 𝐾 ) ) ) |
48 |
47
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ 𝐺 ( ( 𝑔 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑔 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ↔ ∀ 𝑡 ∈ 𝐺 ( ( 𝑔 ‘ 𝑡 ) 𝐺 ( ( 2nd ‘ 𝑡 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑡 ) ∩ ( ( 𝑔 ‘ 𝑡 ) 𝐵 ( ( 2nd ‘ 𝑡 ) + 1 ) ) ) ∈ 𝐾 ) ) |
49 |
38 48
|
sylib |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ ( 𝑥 𝐺 0 ∧ ∀ 𝑥 ∈ 𝐺 ( ( 𝑔 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑔 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) ) → ∀ 𝑡 ∈ 𝐺 ( ( 𝑔 ‘ 𝑡 ) 𝐺 ( ( 2nd ‘ 𝑡 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑡 ) ∩ ( ( 𝑔 ‘ 𝑡 ) 𝐵 ( ( 2nd ‘ 𝑡 ) + 1 ) ) ) ∈ 𝐾 ) ) |
50 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ ( 𝑥 𝐺 0 ∧ ∀ 𝑥 ∈ 𝐺 ( ( 𝑔 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑔 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) ) → 𝑥 𝐺 0 ) |
51 |
|
eqeq1 |
⊢ ( 𝑔 = 𝑚 → ( 𝑔 = 0 ↔ 𝑚 = 0 ) ) |
52 |
|
oveq1 |
⊢ ( 𝑔 = 𝑚 → ( 𝑔 − 1 ) = ( 𝑚 − 1 ) ) |
53 |
51 52
|
ifbieq2d |
⊢ ( 𝑔 = 𝑚 → if ( 𝑔 = 0 , 𝑥 , ( 𝑔 − 1 ) ) = if ( 𝑚 = 0 , 𝑥 , ( 𝑚 − 1 ) ) ) |
54 |
53
|
cbvmptv |
⊢ ( 𝑔 ∈ ℕ0 ↦ if ( 𝑔 = 0 , 𝑥 , ( 𝑔 − 1 ) ) ) = ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝑥 , ( 𝑚 − 1 ) ) ) |
55 |
|
seqeq3 |
⊢ ( ( 𝑔 ∈ ℕ0 ↦ if ( 𝑔 = 0 , 𝑥 , ( 𝑔 − 1 ) ) ) = ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝑥 , ( 𝑚 − 1 ) ) ) → seq 0 ( 𝑔 , ( 𝑔 ∈ ℕ0 ↦ if ( 𝑔 = 0 , 𝑥 , ( 𝑔 − 1 ) ) ) ) = seq 0 ( 𝑔 , ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝑥 , ( 𝑚 − 1 ) ) ) ) ) |
56 |
54 55
|
ax-mp |
⊢ seq 0 ( 𝑔 , ( 𝑔 ∈ ℕ0 ↦ if ( 𝑔 = 0 , 𝑥 , ( 𝑔 − 1 ) ) ) ) = seq 0 ( 𝑔 , ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝑥 , ( 𝑚 − 1 ) ) ) ) |
57 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ 〈 ( seq 0 ( 𝑔 , ( 𝑔 ∈ ℕ0 ↦ if ( 𝑔 = 0 , 𝑥 , ( 𝑔 − 1 ) ) ) ) ‘ 𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) 〉 ) = ( 𝑛 ∈ ℕ ↦ 〈 ( seq 0 ( 𝑔 , ( 𝑔 ∈ ℕ0 ↦ if ( 𝑔 = 0 , 𝑥 , ( 𝑔 − 1 ) ) ) ) ‘ 𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) 〉 ) |
58 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ ( 𝑥 𝐺 0 ∧ ∀ 𝑥 ∈ 𝐺 ( ( 𝑔 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑔 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) ) → 𝑈 ⊆ 𝐽 ) |
59 |
|
cmetmet |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
60 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
61 |
1
|
mopnuni |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
62 |
5 59 60 61
|
4syl |
⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
63 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) → 𝑋 = ∪ 𝐽 ) |
64 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) → ∪ 𝐽 = ∪ 𝑈 ) |
65 |
63 64
|
eqtr2d |
⊢ ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) → ∪ 𝑈 = 𝑋 ) |
66 |
65
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ ( 𝑥 𝐺 0 ∧ ∀ 𝑥 ∈ 𝐺 ( ( 𝑔 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑔 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) ) → ∪ 𝑈 = 𝑋 ) |
67 |
1 2 3 4 35 36 37 49 50 56 57 58 66
|
heiborlem9 |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ ( 𝑥 𝐺 0 ∧ ∀ 𝑥 ∈ 𝐺 ( ( 𝑔 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑔 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) ) → ¬ 𝑋 ∈ 𝐾 ) |
68 |
67
|
expr |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ 𝑥 𝐺 0 ) → ( ∀ 𝑥 ∈ 𝐺 ( ( 𝑔 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑔 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) → ¬ 𝑋 ∈ 𝐾 ) ) |
69 |
68
|
exlimdv |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ 𝑥 𝐺 0 ) → ( ∃ 𝑔 ∀ 𝑥 ∈ 𝐺 ( ( 𝑔 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑔 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) → ¬ 𝑋 ∈ 𝐾 ) ) |
70 |
34 69
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ 𝑥 𝐺 0 ) → ¬ 𝑋 ∈ 𝐾 ) |
71 |
32 70
|
sylan2br |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ ( 0 ∈ ℕ0 ∧ 𝑥 ∈ ( 𝐹 ‘ 0 ) ∧ ( 𝑥 𝐵 0 ) ∈ 𝐾 ) ) → ¬ 𝑋 ∈ 𝐾 ) |
72 |
71
|
3exp2 |
⊢ ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) → ( 0 ∈ ℕ0 → ( 𝑥 ∈ ( 𝐹 ‘ 0 ) → ( ( 𝑥 𝐵 0 ) ∈ 𝐾 → ¬ 𝑋 ∈ 𝐾 ) ) ) ) |
73 |
8 72
|
mpi |
⊢ ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) → ( 𝑥 ∈ ( 𝐹 ‘ 0 ) → ( ( 𝑥 𝐵 0 ) ∈ 𝐾 → ¬ 𝑋 ∈ 𝐾 ) ) ) |
74 |
73
|
rexlimdv |
⊢ ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) → ( ∃ 𝑥 ∈ ( 𝐹 ‘ 0 ) ( 𝑥 𝐵 0 ) ∈ 𝐾 → ¬ 𝑋 ∈ 𝐾 ) ) |
75 |
29 74
|
syld |
⊢ ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) → ( 𝑋 ∈ 𝐾 → ¬ 𝑋 ∈ 𝐾 ) ) |
76 |
75
|
pm2.01d |
⊢ ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) → ¬ 𝑋 ∈ 𝐾 ) |
77 |
|
elfvdm |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝑋 ∈ dom CMet ) |
78 |
|
sseq1 |
⊢ ( 𝑢 = 𝑋 → ( 𝑢 ⊆ ∪ 𝑣 ↔ 𝑋 ⊆ ∪ 𝑣 ) ) |
79 |
78
|
rexbidv |
⊢ ( 𝑢 = 𝑋 → ( ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 ↔ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑋 ⊆ ∪ 𝑣 ) ) |
80 |
79
|
notbid |
⊢ ( 𝑢 = 𝑋 → ( ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 ↔ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑋 ⊆ ∪ 𝑣 ) ) |
81 |
80 2
|
elab2g |
⊢ ( 𝑋 ∈ dom CMet → ( 𝑋 ∈ 𝐾 ↔ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑋 ⊆ ∪ 𝑣 ) ) |
82 |
5 77 81
|
3syl |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐾 ↔ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑋 ⊆ ∪ 𝑣 ) ) |
83 |
82
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) → ( 𝑋 ∈ 𝐾 ↔ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑋 ⊆ ∪ 𝑣 ) ) |
84 |
83
|
con2bid |
⊢ ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) → ( ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑋 ⊆ ∪ 𝑣 ↔ ¬ 𝑋 ∈ 𝐾 ) ) |
85 |
76 84
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑋 ⊆ ∪ 𝑣 ) |
86 |
62
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → 𝑋 = ∪ 𝐽 ) |
87 |
86
|
sseq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → ( 𝑋 ⊆ ∪ 𝑣 ↔ ∪ 𝐽 ⊆ ∪ 𝑣 ) ) |
88 |
|
inss1 |
⊢ ( 𝒫 𝑈 ∩ Fin ) ⊆ 𝒫 𝑈 |
89 |
88
|
sseli |
⊢ ( 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) → 𝑣 ∈ 𝒫 𝑈 ) |
90 |
89
|
elpwid |
⊢ ( 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) → 𝑣 ⊆ 𝑈 ) |
91 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) → 𝑈 ⊆ 𝐽 ) |
92 |
|
sstr |
⊢ ( ( 𝑣 ⊆ 𝑈 ∧ 𝑈 ⊆ 𝐽 ) → 𝑣 ⊆ 𝐽 ) |
93 |
92
|
unissd |
⊢ ( ( 𝑣 ⊆ 𝑈 ∧ 𝑈 ⊆ 𝐽 ) → ∪ 𝑣 ⊆ ∪ 𝐽 ) |
94 |
90 91 93
|
syl2anr |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → ∪ 𝑣 ⊆ ∪ 𝐽 ) |
95 |
94
|
biantrud |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → ( ∪ 𝐽 ⊆ ∪ 𝑣 ↔ ( ∪ 𝐽 ⊆ ∪ 𝑣 ∧ ∪ 𝑣 ⊆ ∪ 𝐽 ) ) ) |
96 |
|
eqss |
⊢ ( ∪ 𝐽 = ∪ 𝑣 ↔ ( ∪ 𝐽 ⊆ ∪ 𝑣 ∧ ∪ 𝑣 ⊆ ∪ 𝐽 ) ) |
97 |
95 96
|
bitr4di |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → ( ∪ 𝐽 ⊆ ∪ 𝑣 ↔ ∪ 𝐽 = ∪ 𝑣 ) ) |
98 |
87 97
|
bitrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → ( 𝑋 ⊆ ∪ 𝑣 ↔ ∪ 𝐽 = ∪ 𝑣 ) ) |
99 |
98
|
rexbidva |
⊢ ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) → ( ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑋 ⊆ ∪ 𝑣 ↔ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ∪ 𝐽 = ∪ 𝑣 ) ) |
100 |
85 99
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ∪ 𝐽 = ∪ 𝑣 ) |