Step |
Hyp |
Ref |
Expression |
1 |
|
heibor.1 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
2 |
|
heibor.3 |
⊢ 𝐾 = { 𝑢 ∣ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 } |
3 |
|
heibor.4 |
⊢ 𝐺 = { 〈 𝑦 , 𝑛 〉 ∣ ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ∧ ( 𝑦 𝐵 𝑛 ) ∈ 𝐾 ) } |
4 |
|
heibor.5 |
⊢ 𝐵 = ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) |
5 |
|
heibor.6 |
⊢ ( 𝜑 → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
6 |
|
heibor.7 |
⊢ ( 𝜑 → 𝐹 : ℕ0 ⟶ ( 𝒫 𝑋 ∩ Fin ) ) |
7 |
|
heibor.8 |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ( 𝑦 𝐵 𝑛 ) ) |
8 |
|
heibor.9 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐺 ( ( 𝑇 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑇 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) |
9 |
|
heibor.10 |
⊢ ( 𝜑 → 𝐶 𝐺 0 ) |
10 |
|
heibor.11 |
⊢ 𝑆 = seq 0 ( 𝑇 , ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ) |
11 |
|
heibor.12 |
⊢ 𝑀 = ( 𝑛 ∈ ℕ ↦ 〈 ( 𝑆 ‘ 𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) 〉 ) |
12 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
13 |
|
inss1 |
⊢ ( 𝒫 𝑋 ∩ Fin ) ⊆ 𝒫 𝑋 |
14 |
6
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝒫 𝑋 ∩ Fin ) ) |
15 |
13 14
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝒫 𝑋 ) |
16 |
15
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ⊆ 𝑋 ) |
17 |
1 2 3 4 5 6 7 8 9 10
|
heiborlem4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑆 ‘ 𝑘 ) 𝐺 𝑘 ) |
18 |
|
fvex |
⊢ ( 𝑆 ‘ 𝑘 ) ∈ V |
19 |
|
vex |
⊢ 𝑘 ∈ V |
20 |
1 2 3 18 19
|
heiborlem2 |
⊢ ( ( 𝑆 ‘ 𝑘 ) 𝐺 𝑘 ↔ ( 𝑘 ∈ ℕ0 ∧ ( 𝑆 ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ∧ ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∈ 𝐾 ) ) |
21 |
20
|
simp2bi |
⊢ ( ( 𝑆 ‘ 𝑘 ) 𝐺 𝑘 → ( 𝑆 ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ) |
22 |
17 21
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑆 ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ) |
23 |
16 22
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑆 ‘ 𝑘 ) ∈ 𝑋 ) |
24 |
12 23
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ 𝑘 ) ∈ 𝑋 ) |
25 |
24
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ∈ 𝑋 ) |
26 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝑆 ‘ 𝑘 ) = ( 𝑆 ‘ 𝑛 ) ) |
27 |
26
|
eleq1d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝑆 ‘ 𝑘 ) ∈ 𝑋 ↔ ( 𝑆 ‘ 𝑛 ) ∈ 𝑋 ) ) |
28 |
27
|
cbvralvw |
⊢ ( ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ∈ 𝑋 ↔ ∀ 𝑛 ∈ ℕ ( 𝑆 ‘ 𝑛 ) ∈ 𝑋 ) |
29 |
25 28
|
sylib |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝑆 ‘ 𝑛 ) ∈ 𝑋 ) |
30 |
|
3re |
⊢ 3 ∈ ℝ |
31 |
|
3pos |
⊢ 0 < 3 |
32 |
30 31
|
elrpii |
⊢ 3 ∈ ℝ+ |
33 |
|
2nn |
⊢ 2 ∈ ℕ |
34 |
|
nnnn0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) |
35 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
36 |
33 34 35
|
sylancr |
⊢ ( 𝑛 ∈ ℕ → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
37 |
36
|
nnrpd |
⊢ ( 𝑛 ∈ ℕ → ( 2 ↑ 𝑛 ) ∈ ℝ+ ) |
38 |
|
rpdivcl |
⊢ ( ( 3 ∈ ℝ+ ∧ ( 2 ↑ 𝑛 ) ∈ ℝ+ ) → ( 3 / ( 2 ↑ 𝑛 ) ) ∈ ℝ+ ) |
39 |
32 37 38
|
sylancr |
⊢ ( 𝑛 ∈ ℕ → ( 3 / ( 2 ↑ 𝑛 ) ) ∈ ℝ+ ) |
40 |
|
opelxpi |
⊢ ( ( ( 𝑆 ‘ 𝑛 ) ∈ 𝑋 ∧ ( 3 / ( 2 ↑ 𝑛 ) ) ∈ ℝ+ ) → 〈 ( 𝑆 ‘ 𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) 〉 ∈ ( 𝑋 × ℝ+ ) ) |
41 |
40
|
expcom |
⊢ ( ( 3 / ( 2 ↑ 𝑛 ) ) ∈ ℝ+ → ( ( 𝑆 ‘ 𝑛 ) ∈ 𝑋 → 〈 ( 𝑆 ‘ 𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) 〉 ∈ ( 𝑋 × ℝ+ ) ) ) |
42 |
39 41
|
syl |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑆 ‘ 𝑛 ) ∈ 𝑋 → 〈 ( 𝑆 ‘ 𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) 〉 ∈ ( 𝑋 × ℝ+ ) ) ) |
43 |
42
|
ralimia |
⊢ ( ∀ 𝑛 ∈ ℕ ( 𝑆 ‘ 𝑛 ) ∈ 𝑋 → ∀ 𝑛 ∈ ℕ 〈 ( 𝑆 ‘ 𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) 〉 ∈ ( 𝑋 × ℝ+ ) ) |
44 |
29 43
|
syl |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ 〈 ( 𝑆 ‘ 𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) 〉 ∈ ( 𝑋 × ℝ+ ) ) |
45 |
11
|
fmpt |
⊢ ( ∀ 𝑛 ∈ ℕ 〈 ( 𝑆 ‘ 𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) 〉 ∈ ( 𝑋 × ℝ+ ) ↔ 𝑀 : ℕ ⟶ ( 𝑋 × ℝ+ ) ) |
46 |
44 45
|
sylib |
⊢ ( 𝜑 → 𝑀 : ℕ ⟶ ( 𝑋 × ℝ+ ) ) |