| Step |
Hyp |
Ref |
Expression |
| 1 |
|
heibor.1 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
| 2 |
|
heibor.3 |
⊢ 𝐾 = { 𝑢 ∣ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 } |
| 3 |
|
heibor.4 |
⊢ 𝐺 = { 〈 𝑦 , 𝑛 〉 ∣ ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ∧ ( 𝑦 𝐵 𝑛 ) ∈ 𝐾 ) } |
| 4 |
|
heibor.5 |
⊢ 𝐵 = ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) |
| 5 |
|
heibor.6 |
⊢ ( 𝜑 → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
| 6 |
|
heibor.7 |
⊢ ( 𝜑 → 𝐹 : ℕ0 ⟶ ( 𝒫 𝑋 ∩ Fin ) ) |
| 7 |
|
heibor.8 |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ( 𝑦 𝐵 𝑛 ) ) |
| 8 |
|
heibor.9 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐺 ( ( 𝑇 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑇 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) |
| 9 |
|
heibor.10 |
⊢ ( 𝜑 → 𝐶 𝐺 0 ) |
| 10 |
|
heibor.11 |
⊢ 𝑆 = seq 0 ( 𝑇 , ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ) |
| 11 |
|
heibor.12 |
⊢ 𝑀 = ( 𝑛 ∈ ℕ ↦ 〈 ( 𝑆 ‘ 𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) 〉 ) |
| 12 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
| 13 |
|
cmetmet |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 14 |
5 13
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 15 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 16 |
14 15
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 18 |
|
inss1 |
⊢ ( 𝒫 𝑋 ∩ Fin ) ⊆ 𝒫 𝑋 |
| 19 |
|
fss |
⊢ ( ( 𝐹 : ℕ0 ⟶ ( 𝒫 𝑋 ∩ Fin ) ∧ ( 𝒫 𝑋 ∩ Fin ) ⊆ 𝒫 𝑋 ) → 𝐹 : ℕ0 ⟶ 𝒫 𝑋 ) |
| 20 |
6 18 19
|
sylancl |
⊢ ( 𝜑 → 𝐹 : ℕ0 ⟶ 𝒫 𝑋 ) |
| 21 |
|
peano2nn0 |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ0 ) |
| 22 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ℕ0 ⟶ 𝒫 𝑋 ∧ ( 𝑘 + 1 ) ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ 𝒫 𝑋 ) |
| 23 |
20 21 22
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ 𝒫 𝑋 ) |
| 24 |
23
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ⊆ 𝑋 ) |
| 25 |
1 2 3 4 5 6 7 8 9 10
|
heiborlem4 |
⊢ ( ( 𝜑 ∧ ( 𝑘 + 1 ) ∈ ℕ0 ) → ( 𝑆 ‘ ( 𝑘 + 1 ) ) 𝐺 ( 𝑘 + 1 ) ) |
| 26 |
21 25
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑆 ‘ ( 𝑘 + 1 ) ) 𝐺 ( 𝑘 + 1 ) ) |
| 27 |
|
fvex |
⊢ ( 𝑆 ‘ ( 𝑘 + 1 ) ) ∈ V |
| 28 |
|
ovex |
⊢ ( 𝑘 + 1 ) ∈ V |
| 29 |
1 2 3 27 28
|
heiborlem2 |
⊢ ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) 𝐺 ( 𝑘 + 1 ) ↔ ( ( 𝑘 + 1 ) ∈ ℕ0 ∧ ( 𝑆 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∧ ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) 𝐵 ( 𝑘 + 1 ) ) ∈ 𝐾 ) ) |
| 30 |
29
|
simp2bi |
⊢ ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) 𝐺 ( 𝑘 + 1 ) → ( 𝑆 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 31 |
26 30
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑆 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 32 |
24 31
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑆 ‘ ( 𝑘 + 1 ) ) ∈ 𝑋 ) |
| 33 |
20
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝒫 𝑋 ) |
| 34 |
33
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ⊆ 𝑋 ) |
| 35 |
1 2 3 4 5 6 7 8 9 10
|
heiborlem4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑆 ‘ 𝑘 ) 𝐺 𝑘 ) |
| 36 |
|
fvex |
⊢ ( 𝑆 ‘ 𝑘 ) ∈ V |
| 37 |
|
vex |
⊢ 𝑘 ∈ V |
| 38 |
1 2 3 36 37
|
heiborlem2 |
⊢ ( ( 𝑆 ‘ 𝑘 ) 𝐺 𝑘 ↔ ( 𝑘 ∈ ℕ0 ∧ ( 𝑆 ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ∧ ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∈ 𝐾 ) ) |
| 39 |
38
|
simp2bi |
⊢ ( ( 𝑆 ‘ 𝑘 ) 𝐺 𝑘 → ( 𝑆 ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ) |
| 40 |
35 39
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑆 ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ) |
| 41 |
34 40
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑆 ‘ 𝑘 ) ∈ 𝑋 ) |
| 42 |
|
3re |
⊢ 3 ∈ ℝ |
| 43 |
|
2nn |
⊢ 2 ∈ ℕ |
| 44 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ ( 𝑘 + 1 ) ∈ ℕ0 ) → ( 2 ↑ ( 𝑘 + 1 ) ) ∈ ℕ ) |
| 45 |
43 21 44
|
sylancr |
⊢ ( 𝑘 ∈ ℕ0 → ( 2 ↑ ( 𝑘 + 1 ) ) ∈ ℕ ) |
| 46 |
45
|
nnrpd |
⊢ ( 𝑘 ∈ ℕ0 → ( 2 ↑ ( 𝑘 + 1 ) ) ∈ ℝ+ ) |
| 47 |
46
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 2 ↑ ( 𝑘 + 1 ) ) ∈ ℝ+ ) |
| 48 |
|
rerpdivcl |
⊢ ( ( 3 ∈ ℝ ∧ ( 2 ↑ ( 𝑘 + 1 ) ) ∈ ℝ+ ) → ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ∈ ℝ ) |
| 49 |
42 47 48
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ∈ ℝ ) |
| 50 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 2 ↑ 𝑘 ) ∈ ℕ ) |
| 51 |
43 50
|
mpan |
⊢ ( 𝑘 ∈ ℕ0 → ( 2 ↑ 𝑘 ) ∈ ℕ ) |
| 52 |
51
|
nnrpd |
⊢ ( 𝑘 ∈ ℕ0 → ( 2 ↑ 𝑘 ) ∈ ℝ+ ) |
| 53 |
52
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 2 ↑ 𝑘 ) ∈ ℝ+ ) |
| 54 |
|
rerpdivcl |
⊢ ( ( 3 ∈ ℝ ∧ ( 2 ↑ 𝑘 ) ∈ ℝ+ ) → ( 3 / ( 2 ↑ 𝑘 ) ) ∈ ℝ ) |
| 55 |
42 53 54
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 3 / ( 2 ↑ 𝑘 ) ) ∈ ℝ ) |
| 56 |
|
oveq1 |
⊢ ( 𝑧 = ( 𝑆 ‘ 𝑘 ) → ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) = ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) |
| 57 |
|
oveq2 |
⊢ ( 𝑚 = 𝑘 → ( 2 ↑ 𝑚 ) = ( 2 ↑ 𝑘 ) ) |
| 58 |
57
|
oveq2d |
⊢ ( 𝑚 = 𝑘 → ( 1 / ( 2 ↑ 𝑚 ) ) = ( 1 / ( 2 ↑ 𝑘 ) ) ) |
| 59 |
58
|
oveq2d |
⊢ ( 𝑚 = 𝑘 → ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) = ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) ) |
| 60 |
|
ovex |
⊢ ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) ∈ V |
| 61 |
56 59 4 60
|
ovmpo |
⊢ ( ( ( 𝑆 ‘ 𝑘 ) ∈ 𝑋 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) = ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) ) |
| 62 |
41 61
|
sylancom |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) = ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) ) |
| 63 |
|
df-br |
⊢ ( ( 𝑆 ‘ 𝑘 ) 𝐺 𝑘 ↔ 〈 ( 𝑆 ‘ 𝑘 ) , 𝑘 〉 ∈ 𝐺 ) |
| 64 |
|
fveq2 |
⊢ ( 𝑥 = 〈 ( 𝑆 ‘ 𝑘 ) , 𝑘 〉 → ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 〈 ( 𝑆 ‘ 𝑘 ) , 𝑘 〉 ) ) |
| 65 |
|
df-ov |
⊢ ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) = ( 𝑇 ‘ 〈 ( 𝑆 ‘ 𝑘 ) , 𝑘 〉 ) |
| 66 |
64 65
|
eqtr4di |
⊢ ( 𝑥 = 〈 ( 𝑆 ‘ 𝑘 ) , 𝑘 〉 → ( 𝑇 ‘ 𝑥 ) = ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) |
| 67 |
36 37
|
op2ndd |
⊢ ( 𝑥 = 〈 ( 𝑆 ‘ 𝑘 ) , 𝑘 〉 → ( 2nd ‘ 𝑥 ) = 𝑘 ) |
| 68 |
67
|
oveq1d |
⊢ ( 𝑥 = 〈 ( 𝑆 ‘ 𝑘 ) , 𝑘 〉 → ( ( 2nd ‘ 𝑥 ) + 1 ) = ( 𝑘 + 1 ) ) |
| 69 |
66 68
|
breq12d |
⊢ ( 𝑥 = 〈 ( 𝑆 ‘ 𝑘 ) , 𝑘 〉 → ( ( 𝑇 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ↔ ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐺 ( 𝑘 + 1 ) ) ) |
| 70 |
|
fveq2 |
⊢ ( 𝑥 = 〈 ( 𝑆 ‘ 𝑘 ) , 𝑘 〉 → ( 𝐵 ‘ 𝑥 ) = ( 𝐵 ‘ 〈 ( 𝑆 ‘ 𝑘 ) , 𝑘 〉 ) ) |
| 71 |
|
df-ov |
⊢ ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) = ( 𝐵 ‘ 〈 ( 𝑆 ‘ 𝑘 ) , 𝑘 〉 ) |
| 72 |
70 71
|
eqtr4di |
⊢ ( 𝑥 = 〈 ( 𝑆 ‘ 𝑘 ) , 𝑘 〉 → ( 𝐵 ‘ 𝑥 ) = ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ) |
| 73 |
66 68
|
oveq12d |
⊢ ( 𝑥 = 〈 ( 𝑆 ‘ 𝑘 ) , 𝑘 〉 → ( ( 𝑇 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) = ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐵 ( 𝑘 + 1 ) ) ) |
| 74 |
72 73
|
ineq12d |
⊢ ( 𝑥 = 〈 ( 𝑆 ‘ 𝑘 ) , 𝑘 〉 → ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑇 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) = ( ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐵 ( 𝑘 + 1 ) ) ) ) |
| 75 |
74
|
eleq1d |
⊢ ( 𝑥 = 〈 ( 𝑆 ‘ 𝑘 ) , 𝑘 〉 → ( ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑇 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ↔ ( ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐵 ( 𝑘 + 1 ) ) ) ∈ 𝐾 ) ) |
| 76 |
69 75
|
anbi12d |
⊢ ( 𝑥 = 〈 ( 𝑆 ‘ 𝑘 ) , 𝑘 〉 → ( ( ( 𝑇 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑇 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ↔ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐺 ( 𝑘 + 1 ) ∧ ( ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐵 ( 𝑘 + 1 ) ) ) ∈ 𝐾 ) ) ) |
| 77 |
76
|
rspccv |
⊢ ( ∀ 𝑥 ∈ 𝐺 ( ( 𝑇 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑇 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) → ( 〈 ( 𝑆 ‘ 𝑘 ) , 𝑘 〉 ∈ 𝐺 → ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐺 ( 𝑘 + 1 ) ∧ ( ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐵 ( 𝑘 + 1 ) ) ) ∈ 𝐾 ) ) ) |
| 78 |
8 77
|
syl |
⊢ ( 𝜑 → ( 〈 ( 𝑆 ‘ 𝑘 ) , 𝑘 〉 ∈ 𝐺 → ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐺 ( 𝑘 + 1 ) ∧ ( ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐵 ( 𝑘 + 1 ) ) ) ∈ 𝐾 ) ) ) |
| 79 |
63 78
|
biimtrid |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑘 ) 𝐺 𝑘 → ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐺 ( 𝑘 + 1 ) ∧ ( ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐵 ( 𝑘 + 1 ) ) ) ∈ 𝐾 ) ) ) |
| 80 |
79
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑘 ) 𝐺 𝑘 → ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐺 ( 𝑘 + 1 ) ∧ ( ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐵 ( 𝑘 + 1 ) ) ) ∈ 𝐾 ) ) ) |
| 81 |
35 80
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐺 ( 𝑘 + 1 ) ∧ ( ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐵 ( 𝑘 + 1 ) ) ) ∈ 𝐾 ) ) |
| 82 |
81
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐺 ( 𝑘 + 1 ) ) |
| 83 |
|
ovex |
⊢ ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ∈ V |
| 84 |
1 2 3 83 28
|
heiborlem2 |
⊢ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐺 ( 𝑘 + 1 ) ↔ ( ( 𝑘 + 1 ) ∈ ℕ0 ∧ ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∧ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐵 ( 𝑘 + 1 ) ) ∈ 𝐾 ) ) |
| 85 |
84
|
simp2bi |
⊢ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐺 ( 𝑘 + 1 ) → ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 86 |
82 85
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 87 |
24 86
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ∈ 𝑋 ) |
| 88 |
21
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 + 1 ) ∈ ℕ0 ) |
| 89 |
|
oveq1 |
⊢ ( 𝑧 = ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) → ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) = ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) |
| 90 |
|
oveq2 |
⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( 2 ↑ 𝑚 ) = ( 2 ↑ ( 𝑘 + 1 ) ) ) |
| 91 |
90
|
oveq2d |
⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( 1 / ( 2 ↑ 𝑚 ) ) = ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) |
| 92 |
91
|
oveq2d |
⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) = ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 93 |
|
ovex |
⊢ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ∈ V |
| 94 |
89 92 4 93
|
ovmpo |
⊢ ( ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ∈ 𝑋 ∧ ( 𝑘 + 1 ) ∈ ℕ0 ) → ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐵 ( 𝑘 + 1 ) ) = ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 95 |
87 88 94
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐵 ( 𝑘 + 1 ) ) = ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 96 |
62 95
|
ineq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐵 ( 𝑘 + 1 ) ) ) = ( ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 97 |
81
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐵 ( 𝑘 + 1 ) ) ) ∈ 𝐾 ) |
| 98 |
|
0elpw |
⊢ ∅ ∈ 𝒫 𝑈 |
| 99 |
|
0fi |
⊢ ∅ ∈ Fin |
| 100 |
|
elin |
⊢ ( ∅ ∈ ( 𝒫 𝑈 ∩ Fin ) ↔ ( ∅ ∈ 𝒫 𝑈 ∧ ∅ ∈ Fin ) ) |
| 101 |
98 99 100
|
mpbir2an |
⊢ ∅ ∈ ( 𝒫 𝑈 ∩ Fin ) |
| 102 |
|
0ss |
⊢ ∅ ⊆ ∪ ∅ |
| 103 |
|
unieq |
⊢ ( 𝑣 = ∅ → ∪ 𝑣 = ∪ ∅ ) |
| 104 |
103
|
sseq2d |
⊢ ( 𝑣 = ∅ → ( ∅ ⊆ ∪ 𝑣 ↔ ∅ ⊆ ∪ ∅ ) ) |
| 105 |
104
|
rspcev |
⊢ ( ( ∅ ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∅ ⊆ ∪ ∅ ) → ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ∅ ⊆ ∪ 𝑣 ) |
| 106 |
101 102 105
|
mp2an |
⊢ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ∅ ⊆ ∪ 𝑣 |
| 107 |
|
0ex |
⊢ ∅ ∈ V |
| 108 |
|
sseq1 |
⊢ ( 𝑢 = ∅ → ( 𝑢 ⊆ ∪ 𝑣 ↔ ∅ ⊆ ∪ 𝑣 ) ) |
| 109 |
108
|
rexbidv |
⊢ ( 𝑢 = ∅ → ( ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 ↔ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ∅ ⊆ ∪ 𝑣 ) ) |
| 110 |
109
|
notbid |
⊢ ( 𝑢 = ∅ → ( ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 ↔ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ∅ ⊆ ∪ 𝑣 ) ) |
| 111 |
107 110 2
|
elab2 |
⊢ ( ∅ ∈ 𝐾 ↔ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ∅ ⊆ ∪ 𝑣 ) |
| 112 |
111
|
con2bii |
⊢ ( ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ∅ ⊆ ∪ 𝑣 ↔ ¬ ∅ ∈ 𝐾 ) |
| 113 |
106 112
|
mpbi |
⊢ ¬ ∅ ∈ 𝐾 |
| 114 |
|
nelne2 |
⊢ ( ( ( ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐵 ( 𝑘 + 1 ) ) ) ∈ 𝐾 ∧ ¬ ∅ ∈ 𝐾 ) → ( ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐵 ( 𝑘 + 1 ) ) ) ≠ ∅ ) |
| 115 |
97 113 114
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐵 ( 𝑘 + 1 ) ) ) ≠ ∅ ) |
| 116 |
96 115
|
eqnetrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) ≠ ∅ ) |
| 117 |
52
|
rpreccld |
⊢ ( 𝑘 ∈ ℕ0 → ( 1 / ( 2 ↑ 𝑘 ) ) ∈ ℝ+ ) |
| 118 |
117
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 1 / ( 2 ↑ 𝑘 ) ) ∈ ℝ+ ) |
| 119 |
118
|
rpred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 1 / ( 2 ↑ 𝑘 ) ) ∈ ℝ ) |
| 120 |
46
|
rpreccld |
⊢ ( 𝑘 ∈ ℕ0 → ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ∈ ℝ+ ) |
| 121 |
120
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ∈ ℝ+ ) |
| 122 |
121
|
rpred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ∈ ℝ ) |
| 123 |
|
rexadd |
⊢ ( ( ( 1 / ( 2 ↑ 𝑘 ) ) ∈ ℝ ∧ ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ∈ ℝ ) → ( ( 1 / ( 2 ↑ 𝑘 ) ) +𝑒 ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) = ( ( 1 / ( 2 ↑ 𝑘 ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 124 |
119 122 123
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 / ( 2 ↑ 𝑘 ) ) +𝑒 ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) = ( ( 1 / ( 2 ↑ 𝑘 ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 125 |
124
|
breq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 1 / ( 2 ↑ 𝑘 ) ) +𝑒 ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ≤ ( ( 𝑆 ‘ 𝑘 ) 𝐷 ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) ↔ ( ( 1 / ( 2 ↑ 𝑘 ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ≤ ( ( 𝑆 ‘ 𝑘 ) 𝐷 ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) ) ) |
| 126 |
118
|
rpxrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 1 / ( 2 ↑ 𝑘 ) ) ∈ ℝ* ) |
| 127 |
121
|
rpxrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ∈ ℝ* ) |
| 128 |
|
bldisj |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑆 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ∈ 𝑋 ) ∧ ( ( 1 / ( 2 ↑ 𝑘 ) ) ∈ ℝ* ∧ ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ∈ ℝ* ∧ ( ( 1 / ( 2 ↑ 𝑘 ) ) +𝑒 ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ≤ ( ( 𝑆 ‘ 𝑘 ) 𝐷 ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) ) ) → ( ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) = ∅ ) |
| 129 |
128
|
3exp2 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑆 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ∈ 𝑋 ) → ( ( 1 / ( 2 ↑ 𝑘 ) ) ∈ ℝ* → ( ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ∈ ℝ* → ( ( ( 1 / ( 2 ↑ 𝑘 ) ) +𝑒 ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ≤ ( ( 𝑆 ‘ 𝑘 ) 𝐷 ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) → ( ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) = ∅ ) ) ) ) |
| 130 |
129
|
imp32 |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑆 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ∈ 𝑋 ) ∧ ( ( 1 / ( 2 ↑ 𝑘 ) ) ∈ ℝ* ∧ ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ∈ ℝ* ) ) → ( ( ( 1 / ( 2 ↑ 𝑘 ) ) +𝑒 ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ≤ ( ( 𝑆 ‘ 𝑘 ) 𝐷 ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) → ( ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) = ∅ ) ) |
| 131 |
17 41 87 126 127 130
|
syl32anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 1 / ( 2 ↑ 𝑘 ) ) +𝑒 ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ≤ ( ( 𝑆 ‘ 𝑘 ) 𝐷 ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) → ( ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) = ∅ ) ) |
| 132 |
125 131
|
sylbird |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 1 / ( 2 ↑ 𝑘 ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ≤ ( ( 𝑆 ‘ 𝑘 ) 𝐷 ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) → ( ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) = ∅ ) ) |
| 133 |
132
|
necon3ad |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) ≠ ∅ → ¬ ( ( 1 / ( 2 ↑ 𝑘 ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ≤ ( ( 𝑆 ‘ 𝑘 ) 𝐷 ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) ) ) |
| 134 |
116 133
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ¬ ( ( 1 / ( 2 ↑ 𝑘 ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ≤ ( ( 𝑆 ‘ 𝑘 ) 𝐷 ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) ) |
| 135 |
118 121
|
rpaddcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 / ( 2 ↑ 𝑘 ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ∈ ℝ+ ) |
| 136 |
135
|
rpred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 / ( 2 ↑ 𝑘 ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ∈ ℝ ) |
| 137 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 138 |
|
metcl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑆 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ∈ 𝑋 ) → ( ( 𝑆 ‘ 𝑘 ) 𝐷 ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) ∈ ℝ ) |
| 139 |
137 41 87 138
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑘 ) 𝐷 ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) ∈ ℝ ) |
| 140 |
136 139
|
letrid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 1 / ( 2 ↑ 𝑘 ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ≤ ( ( 𝑆 ‘ 𝑘 ) 𝐷 ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) ∨ ( ( 𝑆 ‘ 𝑘 ) 𝐷 ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) ≤ ( ( 1 / ( 2 ↑ 𝑘 ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 141 |
140
|
ord |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ¬ ( ( 1 / ( 2 ↑ 𝑘 ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ≤ ( ( 𝑆 ‘ 𝑘 ) 𝐷 ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) → ( ( 𝑆 ‘ 𝑘 ) 𝐷 ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) ≤ ( ( 1 / ( 2 ↑ 𝑘 ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 142 |
134 141
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑘 ) 𝐷 ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) ≤ ( ( 1 / ( 2 ↑ 𝑘 ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 143 |
|
seqp1 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 0 ) → ( seq 0 ( 𝑇 , ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ) ‘ ( 𝑘 + 1 ) ) = ( ( seq 0 ( 𝑇 , ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ) ‘ 𝑘 ) 𝑇 ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ‘ ( 𝑘 + 1 ) ) ) ) |
| 144 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 145 |
143 144
|
eleq2s |
⊢ ( 𝑘 ∈ ℕ0 → ( seq 0 ( 𝑇 , ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ) ‘ ( 𝑘 + 1 ) ) = ( ( seq 0 ( 𝑇 , ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ) ‘ 𝑘 ) 𝑇 ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ‘ ( 𝑘 + 1 ) ) ) ) |
| 146 |
10
|
fveq1i |
⊢ ( 𝑆 ‘ ( 𝑘 + 1 ) ) = ( seq 0 ( 𝑇 , ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ) ‘ ( 𝑘 + 1 ) ) |
| 147 |
10
|
fveq1i |
⊢ ( 𝑆 ‘ 𝑘 ) = ( seq 0 ( 𝑇 , ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ) ‘ 𝑘 ) |
| 148 |
147
|
oveq1i |
⊢ ( ( 𝑆 ‘ 𝑘 ) 𝑇 ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ‘ ( 𝑘 + 1 ) ) ) = ( ( seq 0 ( 𝑇 , ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ) ‘ 𝑘 ) 𝑇 ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ‘ ( 𝑘 + 1 ) ) ) |
| 149 |
145 146 148
|
3eqtr4g |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑆 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑆 ‘ 𝑘 ) 𝑇 ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ‘ ( 𝑘 + 1 ) ) ) ) |
| 150 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) = ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) |
| 151 |
|
eqeq1 |
⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( 𝑚 = 0 ↔ ( 𝑘 + 1 ) = 0 ) ) |
| 152 |
|
oveq1 |
⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( 𝑚 − 1 ) = ( ( 𝑘 + 1 ) − 1 ) ) |
| 153 |
151 152
|
ifbieq2d |
⊢ ( 𝑚 = ( 𝑘 + 1 ) → if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) = if ( ( 𝑘 + 1 ) = 0 , 𝐶 , ( ( 𝑘 + 1 ) − 1 ) ) ) |
| 154 |
|
nn0p1nn |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ ) |
| 155 |
|
nnne0 |
⊢ ( ( 𝑘 + 1 ) ∈ ℕ → ( 𝑘 + 1 ) ≠ 0 ) |
| 156 |
155
|
neneqd |
⊢ ( ( 𝑘 + 1 ) ∈ ℕ → ¬ ( 𝑘 + 1 ) = 0 ) |
| 157 |
154 156
|
syl |
⊢ ( 𝑘 ∈ ℕ0 → ¬ ( 𝑘 + 1 ) = 0 ) |
| 158 |
157
|
iffalsed |
⊢ ( 𝑘 ∈ ℕ0 → if ( ( 𝑘 + 1 ) = 0 , 𝐶 , ( ( 𝑘 + 1 ) − 1 ) ) = ( ( 𝑘 + 1 ) − 1 ) ) |
| 159 |
|
ovex |
⊢ ( ( 𝑘 + 1 ) − 1 ) ∈ V |
| 160 |
158 159
|
eqeltrdi |
⊢ ( 𝑘 ∈ ℕ0 → if ( ( 𝑘 + 1 ) = 0 , 𝐶 , ( ( 𝑘 + 1 ) − 1 ) ) ∈ V ) |
| 161 |
150 153 21 160
|
fvmptd3 |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ‘ ( 𝑘 + 1 ) ) = if ( ( 𝑘 + 1 ) = 0 , 𝐶 , ( ( 𝑘 + 1 ) − 1 ) ) ) |
| 162 |
|
nn0cn |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) |
| 163 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 164 |
|
pncan |
⊢ ( ( 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑘 + 1 ) − 1 ) = 𝑘 ) |
| 165 |
162 163 164
|
sylancl |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑘 + 1 ) − 1 ) = 𝑘 ) |
| 166 |
161 158 165
|
3eqtrd |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ‘ ( 𝑘 + 1 ) ) = 𝑘 ) |
| 167 |
166
|
oveq2d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑆 ‘ 𝑘 ) 𝑇 ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ‘ ( 𝑘 + 1 ) ) ) = ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) |
| 168 |
149 167
|
eqtrd |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑆 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) |
| 169 |
168
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑆 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) |
| 170 |
169
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) 𝐷 ( 𝑆 ‘ 𝑘 ) ) = ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐷 ( 𝑆 ‘ 𝑘 ) ) ) |
| 171 |
|
metsym |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ∈ 𝑋 ∧ ( 𝑆 ‘ 𝑘 ) ∈ 𝑋 ) → ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐷 ( 𝑆 ‘ 𝑘 ) ) = ( ( 𝑆 ‘ 𝑘 ) 𝐷 ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) ) |
| 172 |
137 87 41 171
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐷 ( 𝑆 ‘ 𝑘 ) ) = ( ( 𝑆 ‘ 𝑘 ) 𝐷 ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) ) |
| 173 |
170 172
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) 𝐷 ( 𝑆 ‘ 𝑘 ) ) = ( ( 𝑆 ‘ 𝑘 ) 𝐷 ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) ) |
| 174 |
|
3cn |
⊢ 3 ∈ ℂ |
| 175 |
174
|
2timesi |
⊢ ( 2 · 3 ) = ( 3 + 3 ) |
| 176 |
175
|
oveq1i |
⊢ ( ( 2 · 3 ) − 3 ) = ( ( 3 + 3 ) − 3 ) |
| 177 |
174 174
|
pncan3oi |
⊢ ( ( 3 + 3 ) − 3 ) = 3 |
| 178 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
| 179 |
176 177 178
|
3eqtri |
⊢ ( ( 2 · 3 ) − 3 ) = ( 2 + 1 ) |
| 180 |
179
|
oveq1i |
⊢ ( ( ( 2 · 3 ) − 3 ) / ( 2 ↑ ( 𝑘 + 1 ) ) ) = ( ( 2 + 1 ) / ( 2 ↑ ( 𝑘 + 1 ) ) ) |
| 181 |
|
rpcn |
⊢ ( ( 2 ↑ ( 𝑘 + 1 ) ) ∈ ℝ+ → ( 2 ↑ ( 𝑘 + 1 ) ) ∈ ℂ ) |
| 182 |
|
rpne0 |
⊢ ( ( 2 ↑ ( 𝑘 + 1 ) ) ∈ ℝ+ → ( 2 ↑ ( 𝑘 + 1 ) ) ≠ 0 ) |
| 183 |
|
2cn |
⊢ 2 ∈ ℂ |
| 184 |
183 174
|
mulcli |
⊢ ( 2 · 3 ) ∈ ℂ |
| 185 |
|
divsubdir |
⊢ ( ( ( 2 · 3 ) ∈ ℂ ∧ 3 ∈ ℂ ∧ ( ( 2 ↑ ( 𝑘 + 1 ) ) ∈ ℂ ∧ ( 2 ↑ ( 𝑘 + 1 ) ) ≠ 0 ) ) → ( ( ( 2 · 3 ) − 3 ) / ( 2 ↑ ( 𝑘 + 1 ) ) ) = ( ( ( 2 · 3 ) / ( 2 ↑ ( 𝑘 + 1 ) ) ) − ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 186 |
184 174 185
|
mp3an12 |
⊢ ( ( ( 2 ↑ ( 𝑘 + 1 ) ) ∈ ℂ ∧ ( 2 ↑ ( 𝑘 + 1 ) ) ≠ 0 ) → ( ( ( 2 · 3 ) − 3 ) / ( 2 ↑ ( 𝑘 + 1 ) ) ) = ( ( ( 2 · 3 ) / ( 2 ↑ ( 𝑘 + 1 ) ) ) − ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 187 |
181 182 186
|
syl2anc |
⊢ ( ( 2 ↑ ( 𝑘 + 1 ) ) ∈ ℝ+ → ( ( ( 2 · 3 ) − 3 ) / ( 2 ↑ ( 𝑘 + 1 ) ) ) = ( ( ( 2 · 3 ) / ( 2 ↑ ( 𝑘 + 1 ) ) ) − ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 188 |
46 187
|
syl |
⊢ ( 𝑘 ∈ ℕ0 → ( ( ( 2 · 3 ) − 3 ) / ( 2 ↑ ( 𝑘 + 1 ) ) ) = ( ( ( 2 · 3 ) / ( 2 ↑ ( 𝑘 + 1 ) ) ) − ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 189 |
|
divdir |
⊢ ( ( 2 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( ( 2 ↑ ( 𝑘 + 1 ) ) ∈ ℂ ∧ ( 2 ↑ ( 𝑘 + 1 ) ) ≠ 0 ) ) → ( ( 2 + 1 ) / ( 2 ↑ ( 𝑘 + 1 ) ) ) = ( ( 2 / ( 2 ↑ ( 𝑘 + 1 ) ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 190 |
183 163 189
|
mp3an12 |
⊢ ( ( ( 2 ↑ ( 𝑘 + 1 ) ) ∈ ℂ ∧ ( 2 ↑ ( 𝑘 + 1 ) ) ≠ 0 ) → ( ( 2 + 1 ) / ( 2 ↑ ( 𝑘 + 1 ) ) ) = ( ( 2 / ( 2 ↑ ( 𝑘 + 1 ) ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 191 |
181 182 190
|
syl2anc |
⊢ ( ( 2 ↑ ( 𝑘 + 1 ) ) ∈ ℝ+ → ( ( 2 + 1 ) / ( 2 ↑ ( 𝑘 + 1 ) ) ) = ( ( 2 / ( 2 ↑ ( 𝑘 + 1 ) ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 192 |
46 191
|
syl |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 + 1 ) / ( 2 ↑ ( 𝑘 + 1 ) ) ) = ( ( 2 / ( 2 ↑ ( 𝑘 + 1 ) ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 193 |
180 188 192
|
3eqtr3a |
⊢ ( 𝑘 ∈ ℕ0 → ( ( ( 2 · 3 ) / ( 2 ↑ ( 𝑘 + 1 ) ) ) − ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) = ( ( 2 / ( 2 ↑ ( 𝑘 + 1 ) ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 194 |
|
rpcn |
⊢ ( ( 2 ↑ 𝑘 ) ∈ ℝ+ → ( 2 ↑ 𝑘 ) ∈ ℂ ) |
| 195 |
|
rpne0 |
⊢ ( ( 2 ↑ 𝑘 ) ∈ ℝ+ → ( 2 ↑ 𝑘 ) ≠ 0 ) |
| 196 |
|
2cnne0 |
⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) |
| 197 |
|
divcan5 |
⊢ ( ( 3 ∈ ℂ ∧ ( ( 2 ↑ 𝑘 ) ∈ ℂ ∧ ( 2 ↑ 𝑘 ) ≠ 0 ) ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( 2 · 3 ) / ( 2 · ( 2 ↑ 𝑘 ) ) ) = ( 3 / ( 2 ↑ 𝑘 ) ) ) |
| 198 |
174 196 197
|
mp3an13 |
⊢ ( ( ( 2 ↑ 𝑘 ) ∈ ℂ ∧ ( 2 ↑ 𝑘 ) ≠ 0 ) → ( ( 2 · 3 ) / ( 2 · ( 2 ↑ 𝑘 ) ) ) = ( 3 / ( 2 ↑ 𝑘 ) ) ) |
| 199 |
194 195 198
|
syl2anc |
⊢ ( ( 2 ↑ 𝑘 ) ∈ ℝ+ → ( ( 2 · 3 ) / ( 2 · ( 2 ↑ 𝑘 ) ) ) = ( 3 / ( 2 ↑ 𝑘 ) ) ) |
| 200 |
52 199
|
syl |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 · 3 ) / ( 2 · ( 2 ↑ 𝑘 ) ) ) = ( 3 / ( 2 ↑ 𝑘 ) ) ) |
| 201 |
52 194
|
syl |
⊢ ( 𝑘 ∈ ℕ0 → ( 2 ↑ 𝑘 ) ∈ ℂ ) |
| 202 |
|
mulcom |
⊢ ( ( 2 ∈ ℂ ∧ ( 2 ↑ 𝑘 ) ∈ ℂ ) → ( 2 · ( 2 ↑ 𝑘 ) ) = ( ( 2 ↑ 𝑘 ) · 2 ) ) |
| 203 |
183 201 202
|
sylancr |
⊢ ( 𝑘 ∈ ℕ0 → ( 2 · ( 2 ↑ 𝑘 ) ) = ( ( 2 ↑ 𝑘 ) · 2 ) ) |
| 204 |
|
expp1 |
⊢ ( ( 2 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 2 ↑ ( 𝑘 + 1 ) ) = ( ( 2 ↑ 𝑘 ) · 2 ) ) |
| 205 |
183 204
|
mpan |
⊢ ( 𝑘 ∈ ℕ0 → ( 2 ↑ ( 𝑘 + 1 ) ) = ( ( 2 ↑ 𝑘 ) · 2 ) ) |
| 206 |
203 205
|
eqtr4d |
⊢ ( 𝑘 ∈ ℕ0 → ( 2 · ( 2 ↑ 𝑘 ) ) = ( 2 ↑ ( 𝑘 + 1 ) ) ) |
| 207 |
206
|
oveq2d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 · 3 ) / ( 2 · ( 2 ↑ 𝑘 ) ) ) = ( ( 2 · 3 ) / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) |
| 208 |
200 207
|
eqtr3d |
⊢ ( 𝑘 ∈ ℕ0 → ( 3 / ( 2 ↑ 𝑘 ) ) = ( ( 2 · 3 ) / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) |
| 209 |
208
|
oveq1d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 3 / ( 2 ↑ 𝑘 ) ) − ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) = ( ( ( 2 · 3 ) / ( 2 ↑ ( 𝑘 + 1 ) ) ) − ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 210 |
|
divcan5 |
⊢ ( ( 1 ∈ ℂ ∧ ( ( 2 ↑ 𝑘 ) ∈ ℂ ∧ ( 2 ↑ 𝑘 ) ≠ 0 ) ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( 2 · 1 ) / ( 2 · ( 2 ↑ 𝑘 ) ) ) = ( 1 / ( 2 ↑ 𝑘 ) ) ) |
| 211 |
163 196 210
|
mp3an13 |
⊢ ( ( ( 2 ↑ 𝑘 ) ∈ ℂ ∧ ( 2 ↑ 𝑘 ) ≠ 0 ) → ( ( 2 · 1 ) / ( 2 · ( 2 ↑ 𝑘 ) ) ) = ( 1 / ( 2 ↑ 𝑘 ) ) ) |
| 212 |
194 195 211
|
syl2anc |
⊢ ( ( 2 ↑ 𝑘 ) ∈ ℝ+ → ( ( 2 · 1 ) / ( 2 · ( 2 ↑ 𝑘 ) ) ) = ( 1 / ( 2 ↑ 𝑘 ) ) ) |
| 213 |
52 212
|
syl |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 · 1 ) / ( 2 · ( 2 ↑ 𝑘 ) ) ) = ( 1 / ( 2 ↑ 𝑘 ) ) ) |
| 214 |
|
2t1e2 |
⊢ ( 2 · 1 ) = 2 |
| 215 |
214
|
a1i |
⊢ ( 𝑘 ∈ ℕ0 → ( 2 · 1 ) = 2 ) |
| 216 |
215 206
|
oveq12d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 · 1 ) / ( 2 · ( 2 ↑ 𝑘 ) ) ) = ( 2 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) |
| 217 |
213 216
|
eqtr3d |
⊢ ( 𝑘 ∈ ℕ0 → ( 1 / ( 2 ↑ 𝑘 ) ) = ( 2 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) |
| 218 |
217
|
oveq1d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 1 / ( 2 ↑ 𝑘 ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) = ( ( 2 / ( 2 ↑ ( 𝑘 + 1 ) ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 219 |
193 209 218
|
3eqtr4d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 3 / ( 2 ↑ 𝑘 ) ) − ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) = ( ( 1 / ( 2 ↑ 𝑘 ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 220 |
219
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 3 / ( 2 ↑ 𝑘 ) ) − ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) = ( ( 1 / ( 2 ↑ 𝑘 ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 221 |
142 173 220
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) 𝐷 ( 𝑆 ‘ 𝑘 ) ) ≤ ( ( 3 / ( 2 ↑ 𝑘 ) ) − ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 222 |
|
blss2 |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑆 ‘ ( 𝑘 + 1 ) ) ∈ 𝑋 ∧ ( 𝑆 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ( ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ∈ ℝ ∧ ( 3 / ( 2 ↑ 𝑘 ) ) ∈ ℝ ∧ ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) 𝐷 ( 𝑆 ‘ 𝑘 ) ) ≤ ( ( 3 / ( 2 ↑ 𝑘 ) ) − ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) ) → ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) ( ball ‘ 𝐷 ) ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ⊆ ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 3 / ( 2 ↑ 𝑘 ) ) ) ) |
| 223 |
17 32 41 49 55 221 222
|
syl33anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) ( ball ‘ 𝐷 ) ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ⊆ ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 3 / ( 2 ↑ 𝑘 ) ) ) ) |
| 224 |
12 223
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) ( ball ‘ 𝐷 ) ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ⊆ ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 3 / ( 2 ↑ 𝑘 ) ) ) ) |
| 225 |
|
peano2nn |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) |
| 226 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑆 ‘ 𝑛 ) = ( 𝑆 ‘ ( 𝑘 + 1 ) ) ) |
| 227 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 2 ↑ 𝑛 ) = ( 2 ↑ ( 𝑘 + 1 ) ) ) |
| 228 |
227
|
oveq2d |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 3 / ( 2 ↑ 𝑛 ) ) = ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) |
| 229 |
226 228
|
opeq12d |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → 〈 ( 𝑆 ‘ 𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) 〉 = 〈 ( 𝑆 ‘ ( 𝑘 + 1 ) ) , ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) 〉 ) |
| 230 |
|
opex |
⊢ 〈 ( 𝑆 ‘ ( 𝑘 + 1 ) ) , ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) 〉 ∈ V |
| 231 |
229 11 230
|
fvmpt |
⊢ ( ( 𝑘 + 1 ) ∈ ℕ → ( 𝑀 ‘ ( 𝑘 + 1 ) ) = 〈 ( 𝑆 ‘ ( 𝑘 + 1 ) ) , ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) 〉 ) |
| 232 |
225 231
|
syl |
⊢ ( 𝑘 ∈ ℕ → ( 𝑀 ‘ ( 𝑘 + 1 ) ) = 〈 ( 𝑆 ‘ ( 𝑘 + 1 ) ) , ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) 〉 ) |
| 233 |
232
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑀 ‘ ( 𝑘 + 1 ) ) = 〈 ( 𝑆 ‘ ( 𝑘 + 1 ) ) , ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) 〉 ) |
| 234 |
233
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ ( 𝑘 + 1 ) ) ) = ( ( ball ‘ 𝐷 ) ‘ 〈 ( 𝑆 ‘ ( 𝑘 + 1 ) ) , ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) 〉 ) ) |
| 235 |
|
df-ov |
⊢ ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) ( ball ‘ 𝐷 ) ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) = ( ( ball ‘ 𝐷 ) ‘ 〈 ( 𝑆 ‘ ( 𝑘 + 1 ) ) , ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) 〉 ) |
| 236 |
234 235
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ ( 𝑘 + 1 ) ) ) = ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) ( ball ‘ 𝐷 ) ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 237 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝑆 ‘ 𝑛 ) = ( 𝑆 ‘ 𝑘 ) ) |
| 238 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 2 ↑ 𝑛 ) = ( 2 ↑ 𝑘 ) ) |
| 239 |
238
|
oveq2d |
⊢ ( 𝑛 = 𝑘 → ( 3 / ( 2 ↑ 𝑛 ) ) = ( 3 / ( 2 ↑ 𝑘 ) ) ) |
| 240 |
237 239
|
opeq12d |
⊢ ( 𝑛 = 𝑘 → 〈 ( 𝑆 ‘ 𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) 〉 = 〈 ( 𝑆 ‘ 𝑘 ) , ( 3 / ( 2 ↑ 𝑘 ) ) 〉 ) |
| 241 |
|
opex |
⊢ 〈 ( 𝑆 ‘ 𝑘 ) , ( 3 / ( 2 ↑ 𝑘 ) ) 〉 ∈ V |
| 242 |
240 11 241
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( 𝑀 ‘ 𝑘 ) = 〈 ( 𝑆 ‘ 𝑘 ) , ( 3 / ( 2 ↑ 𝑘 ) ) 〉 ) |
| 243 |
242
|
fveq2d |
⊢ ( 𝑘 ∈ ℕ → ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = ( ( ball ‘ 𝐷 ) ‘ 〈 ( 𝑆 ‘ 𝑘 ) , ( 3 / ( 2 ↑ 𝑘 ) ) 〉 ) ) |
| 244 |
|
df-ov |
⊢ ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 3 / ( 2 ↑ 𝑘 ) ) ) = ( ( ball ‘ 𝐷 ) ‘ 〈 ( 𝑆 ‘ 𝑘 ) , ( 3 / ( 2 ↑ 𝑘 ) ) 〉 ) |
| 245 |
243 244
|
eqtr4di |
⊢ ( 𝑘 ∈ ℕ → ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 3 / ( 2 ↑ 𝑘 ) ) ) ) |
| 246 |
245
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 3 / ( 2 ↑ 𝑘 ) ) ) ) |
| 247 |
224 236 246
|
3sstr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ ( 𝑘 + 1 ) ) ) ⊆ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ) |
| 248 |
247
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ ( 𝑘 + 1 ) ) ) ⊆ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ) |