Step |
Hyp |
Ref |
Expression |
1 |
|
heibor.1 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
2 |
|
heibor.3 |
⊢ 𝐾 = { 𝑢 ∣ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 } |
3 |
|
heibor.4 |
⊢ 𝐺 = { 〈 𝑦 , 𝑛 〉 ∣ ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ∧ ( 𝑦 𝐵 𝑛 ) ∈ 𝐾 ) } |
4 |
|
heibor.5 |
⊢ 𝐵 = ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) |
5 |
|
heibor.6 |
⊢ ( 𝜑 → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
6 |
|
heibor.7 |
⊢ ( 𝜑 → 𝐹 : ℕ0 ⟶ ( 𝒫 𝑋 ∩ Fin ) ) |
7 |
|
heibor.8 |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ( 𝑦 𝐵 𝑛 ) ) |
8 |
|
heibor.9 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐺 ( ( 𝑇 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑇 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) |
9 |
|
heibor.10 |
⊢ ( 𝜑 → 𝐶 𝐺 0 ) |
10 |
|
heibor.11 |
⊢ 𝑆 = seq 0 ( 𝑇 , ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ) |
11 |
|
heibor.12 |
⊢ 𝑀 = ( 𝑛 ∈ ℕ ↦ 〈 ( 𝑆 ‘ 𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) 〉 ) |
12 |
|
heibor.13 |
⊢ ( 𝜑 → 𝑈 ⊆ 𝐽 ) |
13 |
|
heibor.14 |
⊢ 𝑌 ∈ V |
14 |
|
heibor.15 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑍 ) |
15 |
|
heibor.16 |
⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) |
16 |
|
heibor.17 |
⊢ ( 𝜑 → ( 1st ∘ 𝑀 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑌 ) |
17 |
|
cmetmet |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
18 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
19 |
5 17 18
|
3syl |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
20 |
12 15
|
sseldd |
⊢ ( 𝜑 → 𝑍 ∈ 𝐽 ) |
21 |
1
|
mopni2 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑍 ∈ 𝐽 ∧ 𝑌 ∈ 𝑍 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝑍 ) |
22 |
19 20 14 21
|
syl3anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ+ ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝑍 ) |
23 |
|
rphalfcl |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 / 2 ) ∈ ℝ+ ) |
24 |
|
breq2 |
⊢ ( 𝑟 = ( 𝑥 / 2 ) → ( ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < 𝑟 ↔ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) |
25 |
24
|
rexbidv |
⊢ ( 𝑟 = ( 𝑥 / 2 ) → ( ∃ 𝑘 ∈ ℕ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < 𝑟 ↔ ∃ 𝑘 ∈ ℕ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) |
26 |
1 2 3 4 5 6 7 8 9 10 11
|
heiborlem7 |
⊢ ∀ 𝑟 ∈ ℝ+ ∃ 𝑘 ∈ ℕ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < 𝑟 |
27 |
25 26
|
vtoclri |
⊢ ( ( 𝑥 / 2 ) ∈ ℝ+ → ∃ 𝑘 ∈ ℕ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) |
28 |
23 27
|
syl |
⊢ ( 𝑥 ∈ ℝ+ → ∃ 𝑘 ∈ ℕ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) |
29 |
28
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑘 ∈ ℕ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) |
30 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
31 |
1 2 3 4 5 6 7 8 9 10
|
heiborlem4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑆 ‘ 𝑘 ) 𝐺 𝑘 ) |
32 |
|
fvex |
⊢ ( 𝑆 ‘ 𝑘 ) ∈ V |
33 |
|
vex |
⊢ 𝑘 ∈ V |
34 |
1 2 3 32 33
|
heiborlem2 |
⊢ ( ( 𝑆 ‘ 𝑘 ) 𝐺 𝑘 ↔ ( 𝑘 ∈ ℕ0 ∧ ( 𝑆 ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ∧ ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∈ 𝐾 ) ) |
35 |
34
|
simp3bi |
⊢ ( ( 𝑆 ‘ 𝑘 ) 𝐺 𝑘 → ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∈ 𝐾 ) |
36 |
31 35
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∈ 𝐾 ) |
37 |
30 36
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∈ 𝐾 ) |
38 |
37
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∈ 𝐾 ) |
39 |
19
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
40 |
1 2 3 4 5 6 7 8 9 10 11
|
heiborlem5 |
⊢ ( 𝜑 → 𝑀 : ℕ ⟶ ( 𝑋 × ℝ+ ) ) |
41 |
40
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑀 ‘ 𝑘 ) ∈ ( 𝑋 × ℝ+ ) ) |
42 |
41
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 𝑀 ‘ 𝑘 ) ∈ ( 𝑋 × ℝ+ ) ) |
43 |
|
xp1st |
⊢ ( ( 𝑀 ‘ 𝑘 ) ∈ ( 𝑋 × ℝ+ ) → ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ∈ 𝑋 ) |
44 |
42 43
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ∈ 𝑋 ) |
45 |
|
2nn |
⊢ 2 ∈ ℕ |
46 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 2 ↑ 𝑘 ) ∈ ℕ ) |
47 |
45 30 46
|
sylancr |
⊢ ( 𝑘 ∈ ℕ → ( 2 ↑ 𝑘 ) ∈ ℕ ) |
48 |
47
|
nnrpd |
⊢ ( 𝑘 ∈ ℕ → ( 2 ↑ 𝑘 ) ∈ ℝ+ ) |
49 |
48
|
rpreccld |
⊢ ( 𝑘 ∈ ℕ → ( 1 / ( 2 ↑ 𝑘 ) ) ∈ ℝ+ ) |
50 |
49
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 1 / ( 2 ↑ 𝑘 ) ) ∈ ℝ+ ) |
51 |
50
|
rpxrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 1 / ( 2 ↑ 𝑘 ) ) ∈ ℝ* ) |
52 |
|
xp2nd |
⊢ ( ( 𝑀 ‘ 𝑘 ) ∈ ( 𝑋 × ℝ+ ) → ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) ∈ ℝ+ ) |
53 |
42 52
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) ∈ ℝ+ ) |
54 |
53
|
rpxrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) ∈ ℝ* ) |
55 |
|
1le3 |
⊢ 1 ≤ 3 |
56 |
|
elrp |
⊢ ( ( 2 ↑ 𝑘 ) ∈ ℝ+ ↔ ( ( 2 ↑ 𝑘 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝑘 ) ) ) |
57 |
|
1re |
⊢ 1 ∈ ℝ |
58 |
|
3re |
⊢ 3 ∈ ℝ |
59 |
|
lediv1 |
⊢ ( ( 1 ∈ ℝ ∧ 3 ∈ ℝ ∧ ( ( 2 ↑ 𝑘 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝑘 ) ) ) → ( 1 ≤ 3 ↔ ( 1 / ( 2 ↑ 𝑘 ) ) ≤ ( 3 / ( 2 ↑ 𝑘 ) ) ) ) |
60 |
57 58 59
|
mp3an12 |
⊢ ( ( ( 2 ↑ 𝑘 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝑘 ) ) → ( 1 ≤ 3 ↔ ( 1 / ( 2 ↑ 𝑘 ) ) ≤ ( 3 / ( 2 ↑ 𝑘 ) ) ) ) |
61 |
56 60
|
sylbi |
⊢ ( ( 2 ↑ 𝑘 ) ∈ ℝ+ → ( 1 ≤ 3 ↔ ( 1 / ( 2 ↑ 𝑘 ) ) ≤ ( 3 / ( 2 ↑ 𝑘 ) ) ) ) |
62 |
55 61
|
mpbii |
⊢ ( ( 2 ↑ 𝑘 ) ∈ ℝ+ → ( 1 / ( 2 ↑ 𝑘 ) ) ≤ ( 3 / ( 2 ↑ 𝑘 ) ) ) |
63 |
48 62
|
syl |
⊢ ( 𝑘 ∈ ℕ → ( 1 / ( 2 ↑ 𝑘 ) ) ≤ ( 3 / ( 2 ↑ 𝑘 ) ) ) |
64 |
63
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 1 / ( 2 ↑ 𝑘 ) ) ≤ ( 3 / ( 2 ↑ 𝑘 ) ) ) |
65 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝑆 ‘ 𝑛 ) = ( 𝑆 ‘ 𝑘 ) ) |
66 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 2 ↑ 𝑛 ) = ( 2 ↑ 𝑘 ) ) |
67 |
66
|
oveq2d |
⊢ ( 𝑛 = 𝑘 → ( 3 / ( 2 ↑ 𝑛 ) ) = ( 3 / ( 2 ↑ 𝑘 ) ) ) |
68 |
65 67
|
opeq12d |
⊢ ( 𝑛 = 𝑘 → 〈 ( 𝑆 ‘ 𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) 〉 = 〈 ( 𝑆 ‘ 𝑘 ) , ( 3 / ( 2 ↑ 𝑘 ) ) 〉 ) |
69 |
|
opex |
⊢ 〈 ( 𝑆 ‘ 𝑘 ) , ( 3 / ( 2 ↑ 𝑘 ) ) 〉 ∈ V |
70 |
68 11 69
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( 𝑀 ‘ 𝑘 ) = 〈 ( 𝑆 ‘ 𝑘 ) , ( 3 / ( 2 ↑ 𝑘 ) ) 〉 ) |
71 |
70
|
fveq2d |
⊢ ( 𝑘 ∈ ℕ → ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) = ( 2nd ‘ 〈 ( 𝑆 ‘ 𝑘 ) , ( 3 / ( 2 ↑ 𝑘 ) ) 〉 ) ) |
72 |
|
ovex |
⊢ ( 3 / ( 2 ↑ 𝑘 ) ) ∈ V |
73 |
32 72
|
op2nd |
⊢ ( 2nd ‘ 〈 ( 𝑆 ‘ 𝑘 ) , ( 3 / ( 2 ↑ 𝑘 ) ) 〉 ) = ( 3 / ( 2 ↑ 𝑘 ) ) |
74 |
71 73
|
eqtrdi |
⊢ ( 𝑘 ∈ ℕ → ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) = ( 3 / ( 2 ↑ 𝑘 ) ) ) |
75 |
74
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) = ( 3 / ( 2 ↑ 𝑘 ) ) ) |
76 |
64 75
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 1 / ( 2 ↑ 𝑘 ) ) ≤ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) ) |
77 |
|
ssbl |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ∈ 𝑋 ) ∧ ( ( 1 / ( 2 ↑ 𝑘 ) ) ∈ ℝ* ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) ∈ ℝ* ) ∧ ( 1 / ( 2 ↑ 𝑘 ) ) ≤ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) ) → ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) ⊆ ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) ) ) |
78 |
39 44 51 54 76 77
|
syl221anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) ⊆ ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) ) ) |
79 |
30
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → 𝑘 ∈ ℕ0 ) |
80 |
|
oveq1 |
⊢ ( 𝑧 = ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) → ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) = ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) |
81 |
|
oveq2 |
⊢ ( 𝑚 = 𝑘 → ( 2 ↑ 𝑚 ) = ( 2 ↑ 𝑘 ) ) |
82 |
81
|
oveq2d |
⊢ ( 𝑚 = 𝑘 → ( 1 / ( 2 ↑ 𝑚 ) ) = ( 1 / ( 2 ↑ 𝑘 ) ) ) |
83 |
82
|
oveq2d |
⊢ ( 𝑚 = 𝑘 → ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) = ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) ) |
84 |
|
ovex |
⊢ ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) ∈ V |
85 |
80 83 4 84
|
ovmpo |
⊢ ( ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ∈ 𝑋 ∧ 𝑘 ∈ ℕ0 ) → ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) 𝐵 𝑘 ) = ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) ) |
86 |
44 79 85
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) 𝐵 𝑘 ) = ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) ) |
87 |
70
|
fveq2d |
⊢ ( 𝑘 ∈ ℕ → ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) = ( 1st ‘ 〈 ( 𝑆 ‘ 𝑘 ) , ( 3 / ( 2 ↑ 𝑘 ) ) 〉 ) ) |
88 |
32 72
|
op1st |
⊢ ( 1st ‘ 〈 ( 𝑆 ‘ 𝑘 ) , ( 3 / ( 2 ↑ 𝑘 ) ) 〉 ) = ( 𝑆 ‘ 𝑘 ) |
89 |
87 88
|
eqtrdi |
⊢ ( 𝑘 ∈ ℕ → ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) = ( 𝑆 ‘ 𝑘 ) ) |
90 |
89
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) = ( 𝑆 ‘ 𝑘 ) ) |
91 |
90
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) 𝐵 𝑘 ) = ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ) |
92 |
86 91
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) = ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ) |
93 |
|
df-ov |
⊢ ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) ) = ( ( ball ‘ 𝐷 ) ‘ 〈 ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) , ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) 〉 ) |
94 |
|
1st2nd2 |
⊢ ( ( 𝑀 ‘ 𝑘 ) ∈ ( 𝑋 × ℝ+ ) → ( 𝑀 ‘ 𝑘 ) = 〈 ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) , ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) 〉 ) |
95 |
42 94
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 𝑀 ‘ 𝑘 ) = 〈 ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) , ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) 〉 ) |
96 |
95
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = ( ( ball ‘ 𝐷 ) ‘ 〈 ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) , ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) 〉 ) ) |
97 |
93 96
|
eqtr4id |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) ) = ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ) |
98 |
78 92 97
|
3sstr3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ) |
99 |
1
|
mopntop |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top ) |
100 |
39 99
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → 𝐽 ∈ Top ) |
101 |
|
blssm |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ∈ 𝑋 ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) ∈ ℝ* ) → ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) ) ⊆ 𝑋 ) |
102 |
39 44 54 101
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) ) ⊆ 𝑋 ) |
103 |
1
|
mopnuni |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
104 |
39 103
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → 𝑋 = ∪ 𝐽 ) |
105 |
102 97 104
|
3sstr3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ⊆ ∪ 𝐽 ) |
106 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
107 |
106
|
sscls |
⊢ ( ( 𝐽 ∈ Top ∧ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ⊆ ∪ 𝐽 ) → ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ) ) |
108 |
100 105 107
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ) ) |
109 |
97
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( cls ‘ 𝐽 ) ‘ ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) ) ) = ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ) ) |
110 |
23
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 𝑥 / 2 ) ∈ ℝ+ ) |
111 |
110
|
rpxrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 𝑥 / 2 ) ∈ ℝ* ) |
112 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) |
113 |
1
|
blsscls |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ∈ 𝑋 ) ∧ ( ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) ∈ ℝ* ∧ ( 𝑥 / 2 ) ∈ ℝ* ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( cls ‘ 𝐽 ) ‘ ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) ) ) ⊆ ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) |
114 |
39 44 54 111 112 113
|
syl23anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( cls ‘ 𝐽 ) ‘ ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) ) ) ⊆ ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) |
115 |
109 114
|
eqsstrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ) ⊆ ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) |
116 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
117 |
116
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → 𝑥 ∈ ℝ ) |
118 |
1 2 3 4 5 6 7 8 9 10 11
|
heiborlem6 |
⊢ ( 𝜑 → ∀ 𝑡 ∈ ℕ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ ( 𝑡 + 1 ) ) ) ⊆ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑡 ) ) ) |
119 |
19 40 118 1
|
caublcls |
⊢ ( ( 𝜑 ∧ ( 1st ∘ 𝑀 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑌 ∧ 𝑘 ∈ ℕ ) → 𝑌 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ) ) |
120 |
119
|
3expia |
⊢ ( ( 𝜑 ∧ ( 1st ∘ 𝑀 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑌 ) → ( 𝑘 ∈ ℕ → 𝑌 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ) ) ) |
121 |
16 120
|
mpdan |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ → 𝑌 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ) ) ) |
122 |
121
|
imp |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑌 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ) ) |
123 |
122
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → 𝑌 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ) ) |
124 |
115 123
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → 𝑌 ∈ ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) |
125 |
|
blhalf |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑌 ∈ ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) ) → ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ⊆ ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) ) |
126 |
39 44 117 124 125
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ⊆ ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) ) |
127 |
115 126
|
sstrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ) ⊆ ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) ) |
128 |
108 127
|
sstrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ⊆ ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) ) |
129 |
98 128
|
sstrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) ) |
130 |
|
sstr2 |
⊢ ( ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) → ( ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝑍 → ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ 𝑍 ) ) |
131 |
129 130
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝑍 → ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ 𝑍 ) ) |
132 |
|
unisng |
⊢ ( 𝑍 ∈ 𝑈 → ∪ { 𝑍 } = 𝑍 ) |
133 |
15 132
|
syl |
⊢ ( 𝜑 → ∪ { 𝑍 } = 𝑍 ) |
134 |
133
|
sseq2d |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ ∪ { 𝑍 } ↔ ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ 𝑍 ) ) |
135 |
134
|
biimpar |
⊢ ( ( 𝜑 ∧ ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ 𝑍 ) → ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ ∪ { 𝑍 } ) |
136 |
15
|
snssd |
⊢ ( 𝜑 → { 𝑍 } ⊆ 𝑈 ) |
137 |
|
snex |
⊢ { 𝑍 } ∈ V |
138 |
137
|
elpw |
⊢ ( { 𝑍 } ∈ 𝒫 𝑈 ↔ { 𝑍 } ⊆ 𝑈 ) |
139 |
136 138
|
sylibr |
⊢ ( 𝜑 → { 𝑍 } ∈ 𝒫 𝑈 ) |
140 |
|
snfi |
⊢ { 𝑍 } ∈ Fin |
141 |
140
|
a1i |
⊢ ( 𝜑 → { 𝑍 } ∈ Fin ) |
142 |
139 141
|
elind |
⊢ ( 𝜑 → { 𝑍 } ∈ ( 𝒫 𝑈 ∩ Fin ) ) |
143 |
|
unieq |
⊢ ( 𝑣 = { 𝑍 } → ∪ 𝑣 = ∪ { 𝑍 } ) |
144 |
143
|
sseq2d |
⊢ ( 𝑣 = { 𝑍 } → ( ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ ∪ 𝑣 ↔ ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ ∪ { 𝑍 } ) ) |
145 |
144
|
rspcev |
⊢ ( ( { 𝑍 } ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ ∪ { 𝑍 } ) → ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ ∪ 𝑣 ) |
146 |
142 145
|
sylan |
⊢ ( ( 𝜑 ∧ ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ ∪ { 𝑍 } ) → ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ ∪ 𝑣 ) |
147 |
135 146
|
syldan |
⊢ ( ( 𝜑 ∧ ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ 𝑍 ) → ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ ∪ 𝑣 ) |
148 |
|
ovex |
⊢ ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∈ V |
149 |
|
sseq1 |
⊢ ( 𝑢 = ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) → ( 𝑢 ⊆ ∪ 𝑣 ↔ ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ ∪ 𝑣 ) ) |
150 |
149
|
rexbidv |
⊢ ( 𝑢 = ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) → ( ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 ↔ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ ∪ 𝑣 ) ) |
151 |
150
|
notbid |
⊢ ( 𝑢 = ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) → ( ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 ↔ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ ∪ 𝑣 ) ) |
152 |
148 151 2
|
elab2 |
⊢ ( ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∈ 𝐾 ↔ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ ∪ 𝑣 ) |
153 |
152
|
con2bii |
⊢ ( ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ ∪ 𝑣 ↔ ¬ ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∈ 𝐾 ) |
154 |
147 153
|
sylib |
⊢ ( ( 𝜑 ∧ ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ 𝑍 ) → ¬ ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∈ 𝐾 ) |
155 |
154
|
ex |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ 𝑍 → ¬ ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∈ 𝐾 ) ) |
156 |
155
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ 𝑍 → ¬ ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∈ 𝐾 ) ) |
157 |
131 156
|
syld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝑍 → ¬ ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∈ 𝐾 ) ) |
158 |
38 157
|
mt2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ¬ ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝑍 ) |
159 |
29 158
|
rexlimddv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ¬ ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝑍 ) |
160 |
159
|
nrexdv |
⊢ ( 𝜑 → ¬ ∃ 𝑥 ∈ ℝ+ ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝑍 ) |
161 |
22 160
|
pm2.21dd |
⊢ ( 𝜑 → 𝜓 ) |