Metamath Proof Explorer


Theorem heiborlem8

Description: Lemma for heibor . The previous lemmas establish that the sequence M is Cauchy, so using completeness we now consider the convergent point Y . By assumption, U is an open cover, so Y is an element of some Z e. U , and some ball centered at Y is contained in Z . But the sequence contains arbitrarily small balls close to Y , so some element ball ( Mn ) of the sequence is contained in Z . And finally we arrive at a contradiction, because { Z } is a finite subcover of U that covers ball ( Mn ) , yet ball ( Mn ) e. K . For convenience, we write this contradiction as ph -> ps where ph is all the accumulated hypotheses and ps is anything at all. (Contributed by Jeff Madsen, 22-Jan-2014)

Ref Expression
Hypotheses heibor.1 𝐽 = ( MetOpen ‘ 𝐷 )
heibor.3 𝐾 = { 𝑢 ∣ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 𝑣 }
heibor.4 𝐺 = { ⟨ 𝑦 , 𝑛 ⟩ ∣ ( 𝑛 ∈ ℕ0𝑦 ∈ ( 𝐹𝑛 ) ∧ ( 𝑦 𝐵 𝑛 ) ∈ 𝐾 ) }
heibor.5 𝐵 = ( 𝑧𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) )
heibor.6 ( 𝜑𝐷 ∈ ( CMet ‘ 𝑋 ) )
heibor.7 ( 𝜑𝐹 : ℕ0 ⟶ ( 𝒫 𝑋 ∩ Fin ) )
heibor.8 ( 𝜑 → ∀ 𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ ( 𝐹𝑛 ) ( 𝑦 𝐵 𝑛 ) )
heibor.9 ( 𝜑 → ∀ 𝑥𝐺 ( ( 𝑇𝑥 ) 𝐺 ( ( 2nd𝑥 ) + 1 ) ∧ ( ( 𝐵𝑥 ) ∩ ( ( 𝑇𝑥 ) 𝐵 ( ( 2nd𝑥 ) + 1 ) ) ) ∈ 𝐾 ) )
heibor.10 ( 𝜑𝐶 𝐺 0 )
heibor.11 𝑆 = seq 0 ( 𝑇 , ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) )
heibor.12 𝑀 = ( 𝑛 ∈ ℕ ↦ ⟨ ( 𝑆𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) ⟩ )
heibor.13 ( 𝜑𝑈𝐽 )
heibor.14 𝑌 ∈ V
heibor.15 ( 𝜑𝑌𝑍 )
heibor.16 ( 𝜑𝑍𝑈 )
heibor.17 ( 𝜑 → ( 1st𝑀 ) ( ⇝𝑡𝐽 ) 𝑌 )
Assertion heiborlem8 ( 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 heibor.1 𝐽 = ( MetOpen ‘ 𝐷 )
2 heibor.3 𝐾 = { 𝑢 ∣ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 𝑣 }
3 heibor.4 𝐺 = { ⟨ 𝑦 , 𝑛 ⟩ ∣ ( 𝑛 ∈ ℕ0𝑦 ∈ ( 𝐹𝑛 ) ∧ ( 𝑦 𝐵 𝑛 ) ∈ 𝐾 ) }
4 heibor.5 𝐵 = ( 𝑧𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) )
5 heibor.6 ( 𝜑𝐷 ∈ ( CMet ‘ 𝑋 ) )
6 heibor.7 ( 𝜑𝐹 : ℕ0 ⟶ ( 𝒫 𝑋 ∩ Fin ) )
7 heibor.8 ( 𝜑 → ∀ 𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ ( 𝐹𝑛 ) ( 𝑦 𝐵 𝑛 ) )
8 heibor.9 ( 𝜑 → ∀ 𝑥𝐺 ( ( 𝑇𝑥 ) 𝐺 ( ( 2nd𝑥 ) + 1 ) ∧ ( ( 𝐵𝑥 ) ∩ ( ( 𝑇𝑥 ) 𝐵 ( ( 2nd𝑥 ) + 1 ) ) ) ∈ 𝐾 ) )
9 heibor.10 ( 𝜑𝐶 𝐺 0 )
10 heibor.11 𝑆 = seq 0 ( 𝑇 , ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) )
11 heibor.12 𝑀 = ( 𝑛 ∈ ℕ ↦ ⟨ ( 𝑆𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) ⟩ )
12 heibor.13 ( 𝜑𝑈𝐽 )
13 heibor.14 𝑌 ∈ V
14 heibor.15 ( 𝜑𝑌𝑍 )
15 heibor.16 ( 𝜑𝑍𝑈 )
16 heibor.17 ( 𝜑 → ( 1st𝑀 ) ( ⇝𝑡𝐽 ) 𝑌 )
17 cmetmet ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) )
18 metxmet ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
19 5 17 18 3syl ( 𝜑𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
20 12 15 sseldd ( 𝜑𝑍𝐽 )
21 1 mopni2 ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑍𝐽𝑌𝑍 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝑍 )
22 19 20 14 21 syl3anc ( 𝜑 → ∃ 𝑥 ∈ ℝ+ ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝑍 )
23 rphalfcl ( 𝑥 ∈ ℝ+ → ( 𝑥 / 2 ) ∈ ℝ+ )
24 breq2 ( 𝑟 = ( 𝑥 / 2 ) → ( ( 2nd ‘ ( 𝑀𝑘 ) ) < 𝑟 ↔ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) )
25 24 rexbidv ( 𝑟 = ( 𝑥 / 2 ) → ( ∃ 𝑘 ∈ ℕ ( 2nd ‘ ( 𝑀𝑘 ) ) < 𝑟 ↔ ∃ 𝑘 ∈ ℕ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) )
26 1 2 3 4 5 6 7 8 9 10 11 heiborlem7 𝑟 ∈ ℝ+𝑘 ∈ ℕ ( 2nd ‘ ( 𝑀𝑘 ) ) < 𝑟
27 25 26 vtoclri ( ( 𝑥 / 2 ) ∈ ℝ+ → ∃ 𝑘 ∈ ℕ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) )
28 23 27 syl ( 𝑥 ∈ ℝ+ → ∃ 𝑘 ∈ ℕ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) )
29 28 adantl ( ( 𝜑𝑥 ∈ ℝ+ ) → ∃ 𝑘 ∈ ℕ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) )
30 nnnn0 ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 )
31 1 2 3 4 5 6 7 8 9 10 heiborlem4 ( ( 𝜑𝑘 ∈ ℕ0 ) → ( 𝑆𝑘 ) 𝐺 𝑘 )
32 fvex ( 𝑆𝑘 ) ∈ V
33 vex 𝑘 ∈ V
34 1 2 3 32 33 heiborlem2 ( ( 𝑆𝑘 ) 𝐺 𝑘 ↔ ( 𝑘 ∈ ℕ0 ∧ ( 𝑆𝑘 ) ∈ ( 𝐹𝑘 ) ∧ ( ( 𝑆𝑘 ) 𝐵 𝑘 ) ∈ 𝐾 ) )
35 34 simp3bi ( ( 𝑆𝑘 ) 𝐺 𝑘 → ( ( 𝑆𝑘 ) 𝐵 𝑘 ) ∈ 𝐾 )
36 31 35 syl ( ( 𝜑𝑘 ∈ ℕ0 ) → ( ( 𝑆𝑘 ) 𝐵 𝑘 ) ∈ 𝐾 )
37 30 36 sylan2 ( ( 𝜑𝑘 ∈ ℕ ) → ( ( 𝑆𝑘 ) 𝐵 𝑘 ) ∈ 𝐾 )
38 37 ad2ant2r ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( 𝑆𝑘 ) 𝐵 𝑘 ) ∈ 𝐾 )
39 19 ad2antrr ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
40 1 2 3 4 5 6 7 8 9 10 11 heiborlem5 ( 𝜑𝑀 : ℕ ⟶ ( 𝑋 × ℝ+ ) )
41 40 ffvelrnda ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝑀𝑘 ) ∈ ( 𝑋 × ℝ+ ) )
42 41 ad2ant2r ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 𝑀𝑘 ) ∈ ( 𝑋 × ℝ+ ) )
43 xp1st ( ( 𝑀𝑘 ) ∈ ( 𝑋 × ℝ+ ) → ( 1st ‘ ( 𝑀𝑘 ) ) ∈ 𝑋 )
44 42 43 syl ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 1st ‘ ( 𝑀𝑘 ) ) ∈ 𝑋 )
45 2nn 2 ∈ ℕ
46 nnexpcl ( ( 2 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 2 ↑ 𝑘 ) ∈ ℕ )
47 45 30 46 sylancr ( 𝑘 ∈ ℕ → ( 2 ↑ 𝑘 ) ∈ ℕ )
48 47 nnrpd ( 𝑘 ∈ ℕ → ( 2 ↑ 𝑘 ) ∈ ℝ+ )
49 48 rpreccld ( 𝑘 ∈ ℕ → ( 1 / ( 2 ↑ 𝑘 ) ) ∈ ℝ+ )
50 49 ad2antrl ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 1 / ( 2 ↑ 𝑘 ) ) ∈ ℝ+ )
51 50 rpxrd ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 1 / ( 2 ↑ 𝑘 ) ) ∈ ℝ* )
52 xp2nd ( ( 𝑀𝑘 ) ∈ ( 𝑋 × ℝ+ ) → ( 2nd ‘ ( 𝑀𝑘 ) ) ∈ ℝ+ )
53 42 52 syl ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 2nd ‘ ( 𝑀𝑘 ) ) ∈ ℝ+ )
54 53 rpxrd ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 2nd ‘ ( 𝑀𝑘 ) ) ∈ ℝ* )
55 1le3 1 ≤ 3
56 elrp ( ( 2 ↑ 𝑘 ) ∈ ℝ+ ↔ ( ( 2 ↑ 𝑘 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝑘 ) ) )
57 1re 1 ∈ ℝ
58 3re 3 ∈ ℝ
59 lediv1 ( ( 1 ∈ ℝ ∧ 3 ∈ ℝ ∧ ( ( 2 ↑ 𝑘 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝑘 ) ) ) → ( 1 ≤ 3 ↔ ( 1 / ( 2 ↑ 𝑘 ) ) ≤ ( 3 / ( 2 ↑ 𝑘 ) ) ) )
60 57 58 59 mp3an12 ( ( ( 2 ↑ 𝑘 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝑘 ) ) → ( 1 ≤ 3 ↔ ( 1 / ( 2 ↑ 𝑘 ) ) ≤ ( 3 / ( 2 ↑ 𝑘 ) ) ) )
61 56 60 sylbi ( ( 2 ↑ 𝑘 ) ∈ ℝ+ → ( 1 ≤ 3 ↔ ( 1 / ( 2 ↑ 𝑘 ) ) ≤ ( 3 / ( 2 ↑ 𝑘 ) ) ) )
62 55 61 mpbii ( ( 2 ↑ 𝑘 ) ∈ ℝ+ → ( 1 / ( 2 ↑ 𝑘 ) ) ≤ ( 3 / ( 2 ↑ 𝑘 ) ) )
63 48 62 syl ( 𝑘 ∈ ℕ → ( 1 / ( 2 ↑ 𝑘 ) ) ≤ ( 3 / ( 2 ↑ 𝑘 ) ) )
64 63 ad2antrl ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 1 / ( 2 ↑ 𝑘 ) ) ≤ ( 3 / ( 2 ↑ 𝑘 ) ) )
65 fveq2 ( 𝑛 = 𝑘 → ( 𝑆𝑛 ) = ( 𝑆𝑘 ) )
66 oveq2 ( 𝑛 = 𝑘 → ( 2 ↑ 𝑛 ) = ( 2 ↑ 𝑘 ) )
67 66 oveq2d ( 𝑛 = 𝑘 → ( 3 / ( 2 ↑ 𝑛 ) ) = ( 3 / ( 2 ↑ 𝑘 ) ) )
68 65 67 opeq12d ( 𝑛 = 𝑘 → ⟨ ( 𝑆𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) ⟩ = ⟨ ( 𝑆𝑘 ) , ( 3 / ( 2 ↑ 𝑘 ) ) ⟩ )
69 opex ⟨ ( 𝑆𝑘 ) , ( 3 / ( 2 ↑ 𝑘 ) ) ⟩ ∈ V
70 68 11 69 fvmpt ( 𝑘 ∈ ℕ → ( 𝑀𝑘 ) = ⟨ ( 𝑆𝑘 ) , ( 3 / ( 2 ↑ 𝑘 ) ) ⟩ )
71 70 fveq2d ( 𝑘 ∈ ℕ → ( 2nd ‘ ( 𝑀𝑘 ) ) = ( 2nd ‘ ⟨ ( 𝑆𝑘 ) , ( 3 / ( 2 ↑ 𝑘 ) ) ⟩ ) )
72 ovex ( 3 / ( 2 ↑ 𝑘 ) ) ∈ V
73 32 72 op2nd ( 2nd ‘ ⟨ ( 𝑆𝑘 ) , ( 3 / ( 2 ↑ 𝑘 ) ) ⟩ ) = ( 3 / ( 2 ↑ 𝑘 ) )
74 71 73 eqtrdi ( 𝑘 ∈ ℕ → ( 2nd ‘ ( 𝑀𝑘 ) ) = ( 3 / ( 2 ↑ 𝑘 ) ) )
75 74 ad2antrl ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 2nd ‘ ( 𝑀𝑘 ) ) = ( 3 / ( 2 ↑ 𝑘 ) ) )
76 64 75 breqtrrd ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 1 / ( 2 ↑ 𝑘 ) ) ≤ ( 2nd ‘ ( 𝑀𝑘 ) ) )
77 ssbl ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 1st ‘ ( 𝑀𝑘 ) ) ∈ 𝑋 ) ∧ ( ( 1 / ( 2 ↑ 𝑘 ) ) ∈ ℝ* ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) ∈ ℝ* ) ∧ ( 1 / ( 2 ↑ 𝑘 ) ) ≤ ( 2nd ‘ ( 𝑀𝑘 ) ) ) → ( ( 1st ‘ ( 𝑀𝑘 ) ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) ⊆ ( ( 1st ‘ ( 𝑀𝑘 ) ) ( ball ‘ 𝐷 ) ( 2nd ‘ ( 𝑀𝑘 ) ) ) )
78 39 44 51 54 76 77 syl221anc ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( 1st ‘ ( 𝑀𝑘 ) ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) ⊆ ( ( 1st ‘ ( 𝑀𝑘 ) ) ( ball ‘ 𝐷 ) ( 2nd ‘ ( 𝑀𝑘 ) ) ) )
79 30 ad2antrl ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → 𝑘 ∈ ℕ0 )
80 oveq1 ( 𝑧 = ( 1st ‘ ( 𝑀𝑘 ) ) → ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) = ( ( 1st ‘ ( 𝑀𝑘 ) ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) )
81 oveq2 ( 𝑚 = 𝑘 → ( 2 ↑ 𝑚 ) = ( 2 ↑ 𝑘 ) )
82 81 oveq2d ( 𝑚 = 𝑘 → ( 1 / ( 2 ↑ 𝑚 ) ) = ( 1 / ( 2 ↑ 𝑘 ) ) )
83 82 oveq2d ( 𝑚 = 𝑘 → ( ( 1st ‘ ( 𝑀𝑘 ) ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) = ( ( 1st ‘ ( 𝑀𝑘 ) ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) )
84 ovex ( ( 1st ‘ ( 𝑀𝑘 ) ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) ∈ V
85 80 83 4 84 ovmpo ( ( ( 1st ‘ ( 𝑀𝑘 ) ) ∈ 𝑋𝑘 ∈ ℕ0 ) → ( ( 1st ‘ ( 𝑀𝑘 ) ) 𝐵 𝑘 ) = ( ( 1st ‘ ( 𝑀𝑘 ) ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) )
86 44 79 85 syl2anc ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( 1st ‘ ( 𝑀𝑘 ) ) 𝐵 𝑘 ) = ( ( 1st ‘ ( 𝑀𝑘 ) ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) )
87 70 fveq2d ( 𝑘 ∈ ℕ → ( 1st ‘ ( 𝑀𝑘 ) ) = ( 1st ‘ ⟨ ( 𝑆𝑘 ) , ( 3 / ( 2 ↑ 𝑘 ) ) ⟩ ) )
88 32 72 op1st ( 1st ‘ ⟨ ( 𝑆𝑘 ) , ( 3 / ( 2 ↑ 𝑘 ) ) ⟩ ) = ( 𝑆𝑘 )
89 87 88 eqtrdi ( 𝑘 ∈ ℕ → ( 1st ‘ ( 𝑀𝑘 ) ) = ( 𝑆𝑘 ) )
90 89 ad2antrl ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 1st ‘ ( 𝑀𝑘 ) ) = ( 𝑆𝑘 ) )
91 90 oveq1d ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( 1st ‘ ( 𝑀𝑘 ) ) 𝐵 𝑘 ) = ( ( 𝑆𝑘 ) 𝐵 𝑘 ) )
92 86 91 eqtr3d ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( 1st ‘ ( 𝑀𝑘 ) ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) = ( ( 𝑆𝑘 ) 𝐵 𝑘 ) )
93 df-ov ( ( 1st ‘ ( 𝑀𝑘 ) ) ( ball ‘ 𝐷 ) ( 2nd ‘ ( 𝑀𝑘 ) ) ) = ( ( ball ‘ 𝐷 ) ‘ ⟨ ( 1st ‘ ( 𝑀𝑘 ) ) , ( 2nd ‘ ( 𝑀𝑘 ) ) ⟩ )
94 1st2nd2 ( ( 𝑀𝑘 ) ∈ ( 𝑋 × ℝ+ ) → ( 𝑀𝑘 ) = ⟨ ( 1st ‘ ( 𝑀𝑘 ) ) , ( 2nd ‘ ( 𝑀𝑘 ) ) ⟩ )
95 42 94 syl ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 𝑀𝑘 ) = ⟨ ( 1st ‘ ( 𝑀𝑘 ) ) , ( 2nd ‘ ( 𝑀𝑘 ) ) ⟩ )
96 95 fveq2d ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( ball ‘ 𝐷 ) ‘ ( 𝑀𝑘 ) ) = ( ( ball ‘ 𝐷 ) ‘ ⟨ ( 1st ‘ ( 𝑀𝑘 ) ) , ( 2nd ‘ ( 𝑀𝑘 ) ) ⟩ ) )
97 93 96 eqtr4id ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( 1st ‘ ( 𝑀𝑘 ) ) ( ball ‘ 𝐷 ) ( 2nd ‘ ( 𝑀𝑘 ) ) ) = ( ( ball ‘ 𝐷 ) ‘ ( 𝑀𝑘 ) ) )
98 78 92 97 3sstr3d ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( 𝑆𝑘 ) 𝐵 𝑘 ) ⊆ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀𝑘 ) ) )
99 1 mopntop ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top )
100 39 99 syl ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → 𝐽 ∈ Top )
101 blssm ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 1st ‘ ( 𝑀𝑘 ) ) ∈ 𝑋 ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) ∈ ℝ* ) → ( ( 1st ‘ ( 𝑀𝑘 ) ) ( ball ‘ 𝐷 ) ( 2nd ‘ ( 𝑀𝑘 ) ) ) ⊆ 𝑋 )
102 39 44 54 101 syl3anc ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( 1st ‘ ( 𝑀𝑘 ) ) ( ball ‘ 𝐷 ) ( 2nd ‘ ( 𝑀𝑘 ) ) ) ⊆ 𝑋 )
103 1 mopnuni ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = 𝐽 )
104 39 103 syl ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → 𝑋 = 𝐽 )
105 102 97 104 3sstr3d ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( ball ‘ 𝐷 ) ‘ ( 𝑀𝑘 ) ) ⊆ 𝐽 )
106 eqid 𝐽 = 𝐽
107 106 sscls ( ( 𝐽 ∈ Top ∧ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀𝑘 ) ) ⊆ 𝐽 ) → ( ( ball ‘ 𝐷 ) ‘ ( 𝑀𝑘 ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀𝑘 ) ) ) )
108 100 105 107 syl2anc ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( ball ‘ 𝐷 ) ‘ ( 𝑀𝑘 ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀𝑘 ) ) ) )
109 97 fveq2d ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( cls ‘ 𝐽 ) ‘ ( ( 1st ‘ ( 𝑀𝑘 ) ) ( ball ‘ 𝐷 ) ( 2nd ‘ ( 𝑀𝑘 ) ) ) ) = ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀𝑘 ) ) ) )
110 23 ad2antlr ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 𝑥 / 2 ) ∈ ℝ+ )
111 110 rpxrd ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 𝑥 / 2 ) ∈ ℝ* )
112 simprr ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) )
113 1 blsscls ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 1st ‘ ( 𝑀𝑘 ) ) ∈ 𝑋 ) ∧ ( ( 2nd ‘ ( 𝑀𝑘 ) ) ∈ ℝ* ∧ ( 𝑥 / 2 ) ∈ ℝ* ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( cls ‘ 𝐽 ) ‘ ( ( 1st ‘ ( 𝑀𝑘 ) ) ( ball ‘ 𝐷 ) ( 2nd ‘ ( 𝑀𝑘 ) ) ) ) ⊆ ( ( 1st ‘ ( 𝑀𝑘 ) ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) )
114 39 44 54 111 112 113 syl23anc ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( cls ‘ 𝐽 ) ‘ ( ( 1st ‘ ( 𝑀𝑘 ) ) ( ball ‘ 𝐷 ) ( 2nd ‘ ( 𝑀𝑘 ) ) ) ) ⊆ ( ( 1st ‘ ( 𝑀𝑘 ) ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) )
115 109 114 eqsstrrd ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀𝑘 ) ) ) ⊆ ( ( 1st ‘ ( 𝑀𝑘 ) ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) )
116 rpre ( 𝑥 ∈ ℝ+𝑥 ∈ ℝ )
117 116 ad2antlr ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → 𝑥 ∈ ℝ )
118 1 2 3 4 5 6 7 8 9 10 11 heiborlem6 ( 𝜑 → ∀ 𝑡 ∈ ℕ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ ( 𝑡 + 1 ) ) ) ⊆ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀𝑡 ) ) )
119 19 40 118 1 caublcls ( ( 𝜑 ∧ ( 1st𝑀 ) ( ⇝𝑡𝐽 ) 𝑌𝑘 ∈ ℕ ) → 𝑌 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀𝑘 ) ) ) )
120 119 3expia ( ( 𝜑 ∧ ( 1st𝑀 ) ( ⇝𝑡𝐽 ) 𝑌 ) → ( 𝑘 ∈ ℕ → 𝑌 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀𝑘 ) ) ) ) )
121 16 120 mpdan ( 𝜑 → ( 𝑘 ∈ ℕ → 𝑌 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀𝑘 ) ) ) ) )
122 121 imp ( ( 𝜑𝑘 ∈ ℕ ) → 𝑌 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀𝑘 ) ) ) )
123 122 ad2ant2r ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → 𝑌 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀𝑘 ) ) ) )
124 115 123 sseldd ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → 𝑌 ∈ ( ( 1st ‘ ( 𝑀𝑘 ) ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) )
125 blhalf ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 1st ‘ ( 𝑀𝑘 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑌 ∈ ( ( 1st ‘ ( 𝑀𝑘 ) ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) ) → ( ( 1st ‘ ( 𝑀𝑘 ) ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ⊆ ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) )
126 39 44 117 124 125 syl22anc ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( 1st ‘ ( 𝑀𝑘 ) ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ⊆ ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) )
127 115 126 sstrd ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀𝑘 ) ) ) ⊆ ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) )
128 108 127 sstrd ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( ball ‘ 𝐷 ) ‘ ( 𝑀𝑘 ) ) ⊆ ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) )
129 98 128 sstrd ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( 𝑆𝑘 ) 𝐵 𝑘 ) ⊆ ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) )
130 sstr2 ( ( ( 𝑆𝑘 ) 𝐵 𝑘 ) ⊆ ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) → ( ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝑍 → ( ( 𝑆𝑘 ) 𝐵 𝑘 ) ⊆ 𝑍 ) )
131 129 130 syl ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝑍 → ( ( 𝑆𝑘 ) 𝐵 𝑘 ) ⊆ 𝑍 ) )
132 unisng ( 𝑍𝑈 { 𝑍 } = 𝑍 )
133 15 132 syl ( 𝜑 { 𝑍 } = 𝑍 )
134 133 sseq2d ( 𝜑 → ( ( ( 𝑆𝑘 ) 𝐵 𝑘 ) ⊆ { 𝑍 } ↔ ( ( 𝑆𝑘 ) 𝐵 𝑘 ) ⊆ 𝑍 ) )
135 134 biimpar ( ( 𝜑 ∧ ( ( 𝑆𝑘 ) 𝐵 𝑘 ) ⊆ 𝑍 ) → ( ( 𝑆𝑘 ) 𝐵 𝑘 ) ⊆ { 𝑍 } )
136 15 snssd ( 𝜑 → { 𝑍 } ⊆ 𝑈 )
137 snex { 𝑍 } ∈ V
138 137 elpw ( { 𝑍 } ∈ 𝒫 𝑈 ↔ { 𝑍 } ⊆ 𝑈 )
139 136 138 sylibr ( 𝜑 → { 𝑍 } ∈ 𝒫 𝑈 )
140 snfi { 𝑍 } ∈ Fin
141 140 a1i ( 𝜑 → { 𝑍 } ∈ Fin )
142 139 141 elind ( 𝜑 → { 𝑍 } ∈ ( 𝒫 𝑈 ∩ Fin ) )
143 unieq ( 𝑣 = { 𝑍 } → 𝑣 = { 𝑍 } )
144 143 sseq2d ( 𝑣 = { 𝑍 } → ( ( ( 𝑆𝑘 ) 𝐵 𝑘 ) ⊆ 𝑣 ↔ ( ( 𝑆𝑘 ) 𝐵 𝑘 ) ⊆ { 𝑍 } ) )
145 144 rspcev ( ( { 𝑍 } ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( ( 𝑆𝑘 ) 𝐵 𝑘 ) ⊆ { 𝑍 } ) → ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ( ( 𝑆𝑘 ) 𝐵 𝑘 ) ⊆ 𝑣 )
146 142 145 sylan ( ( 𝜑 ∧ ( ( 𝑆𝑘 ) 𝐵 𝑘 ) ⊆ { 𝑍 } ) → ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ( ( 𝑆𝑘 ) 𝐵 𝑘 ) ⊆ 𝑣 )
147 135 146 syldan ( ( 𝜑 ∧ ( ( 𝑆𝑘 ) 𝐵 𝑘 ) ⊆ 𝑍 ) → ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ( ( 𝑆𝑘 ) 𝐵 𝑘 ) ⊆ 𝑣 )
148 ovex ( ( 𝑆𝑘 ) 𝐵 𝑘 ) ∈ V
149 sseq1 ( 𝑢 = ( ( 𝑆𝑘 ) 𝐵 𝑘 ) → ( 𝑢 𝑣 ↔ ( ( 𝑆𝑘 ) 𝐵 𝑘 ) ⊆ 𝑣 ) )
150 149 rexbidv ( 𝑢 = ( ( 𝑆𝑘 ) 𝐵 𝑘 ) → ( ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 𝑣 ↔ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ( ( 𝑆𝑘 ) 𝐵 𝑘 ) ⊆ 𝑣 ) )
151 150 notbid ( 𝑢 = ( ( 𝑆𝑘 ) 𝐵 𝑘 ) → ( ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 𝑣 ↔ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ( ( 𝑆𝑘 ) 𝐵 𝑘 ) ⊆ 𝑣 ) )
152 148 151 2 elab2 ( ( ( 𝑆𝑘 ) 𝐵 𝑘 ) ∈ 𝐾 ↔ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ( ( 𝑆𝑘 ) 𝐵 𝑘 ) ⊆ 𝑣 )
153 152 con2bii ( ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ( ( 𝑆𝑘 ) 𝐵 𝑘 ) ⊆ 𝑣 ↔ ¬ ( ( 𝑆𝑘 ) 𝐵 𝑘 ) ∈ 𝐾 )
154 147 153 sylib ( ( 𝜑 ∧ ( ( 𝑆𝑘 ) 𝐵 𝑘 ) ⊆ 𝑍 ) → ¬ ( ( 𝑆𝑘 ) 𝐵 𝑘 ) ∈ 𝐾 )
155 154 ex ( 𝜑 → ( ( ( 𝑆𝑘 ) 𝐵 𝑘 ) ⊆ 𝑍 → ¬ ( ( 𝑆𝑘 ) 𝐵 𝑘 ) ∈ 𝐾 ) )
156 155 ad2antrr ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( ( 𝑆𝑘 ) 𝐵 𝑘 ) ⊆ 𝑍 → ¬ ( ( 𝑆𝑘 ) 𝐵 𝑘 ) ∈ 𝐾 ) )
157 131 156 syld ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝑍 → ¬ ( ( 𝑆𝑘 ) 𝐵 𝑘 ) ∈ 𝐾 ) )
158 38 157 mt2d ( ( ( 𝜑𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ¬ ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝑍 )
159 29 158 rexlimddv ( ( 𝜑𝑥 ∈ ℝ+ ) → ¬ ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝑍 )
160 159 nrexdv ( 𝜑 → ¬ ∃ 𝑥 ∈ ℝ+ ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝑍 )
161 22 160 pm2.21dd ( 𝜑𝜓 )