Step |
Hyp |
Ref |
Expression |
1 |
|
heibor.1 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
2 |
|
heibor.3 |
⊢ 𝐾 = { 𝑢 ∣ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 } |
3 |
|
heibor.4 |
⊢ 𝐺 = { 〈 𝑦 , 𝑛 〉 ∣ ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ∧ ( 𝑦 𝐵 𝑛 ) ∈ 𝐾 ) } |
4 |
|
heibor.5 |
⊢ 𝐵 = ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) |
5 |
|
heibor.6 |
⊢ ( 𝜑 → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
6 |
|
heibor.7 |
⊢ ( 𝜑 → 𝐹 : ℕ0 ⟶ ( 𝒫 𝑋 ∩ Fin ) ) |
7 |
|
heibor.8 |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ( 𝑦 𝐵 𝑛 ) ) |
8 |
|
heibor.9 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐺 ( ( 𝑇 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑇 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) |
9 |
|
heibor.10 |
⊢ ( 𝜑 → 𝐶 𝐺 0 ) |
10 |
|
heibor.11 |
⊢ 𝑆 = seq 0 ( 𝑇 , ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ) |
11 |
|
heibor.12 |
⊢ 𝑀 = ( 𝑛 ∈ ℕ ↦ 〈 ( 𝑆 ‘ 𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) 〉 ) |
12 |
|
heibor.13 |
⊢ ( 𝜑 → 𝑈 ⊆ 𝐽 ) |
13 |
|
heiborlem9.14 |
⊢ ( 𝜑 → ∪ 𝑈 = 𝑋 ) |
14 |
|
cmetmet |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
15 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
16 |
5 14 15
|
3syl |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
17 |
1
|
mopntopon |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
19 |
1 2 3 4 5 6 7 8 9 10 11
|
heiborlem5 |
⊢ ( 𝜑 → 𝑀 : ℕ ⟶ ( 𝑋 × ℝ+ ) ) |
20 |
1 2 3 4 5 6 7 8 9 10 11
|
heiborlem6 |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ ( 𝑘 + 1 ) ) ) ⊆ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ) |
21 |
1 2 3 4 5 6 7 8 9 10 11
|
heiborlem7 |
⊢ ∀ 𝑟 ∈ ℝ+ ∃ 𝑘 ∈ ℕ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < 𝑟 |
22 |
21
|
a1i |
⊢ ( 𝜑 → ∀ 𝑟 ∈ ℝ+ ∃ 𝑘 ∈ ℕ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < 𝑟 ) |
23 |
16 19 20 22
|
caubl |
⊢ ( 𝜑 → ( 1st ∘ 𝑀 ) ∈ ( Cau ‘ 𝐷 ) ) |
24 |
1
|
cmetcau |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ ( 1st ∘ 𝑀 ) ∈ ( Cau ‘ 𝐷 ) ) → ( 1st ∘ 𝑀 ) ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
25 |
5 23 24
|
syl2anc |
⊢ ( 𝜑 → ( 1st ∘ 𝑀 ) ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
26 |
1
|
methaus |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Haus ) |
27 |
16 26
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Haus ) |
28 |
|
lmfun |
⊢ ( 𝐽 ∈ Haus → Fun ( ⇝𝑡 ‘ 𝐽 ) ) |
29 |
|
funfvbrb |
⊢ ( Fun ( ⇝𝑡 ‘ 𝐽 ) → ( ( 1st ∘ 𝑀 ) ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ↔ ( 1st ∘ 𝑀 ) ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ) ) |
30 |
27 28 29
|
3syl |
⊢ ( 𝜑 → ( ( 1st ∘ 𝑀 ) ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ↔ ( 1st ∘ 𝑀 ) ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ) ) |
31 |
25 30
|
mpbid |
⊢ ( 𝜑 → ( 1st ∘ 𝑀 ) ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ) |
32 |
|
lmcl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 1st ∘ 𝑀 ) ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ) → ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ∈ 𝑋 ) |
33 |
18 31 32
|
syl2anc |
⊢ ( 𝜑 → ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ∈ 𝑋 ) |
34 |
33 13
|
eleqtrrd |
⊢ ( 𝜑 → ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ∈ ∪ 𝑈 ) |
35 |
|
eluni2 |
⊢ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ∈ ∪ 𝑈 ↔ ∃ 𝑡 ∈ 𝑈 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ∈ 𝑡 ) |
36 |
34 35
|
sylib |
⊢ ( 𝜑 → ∃ 𝑡 ∈ 𝑈 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ∈ 𝑡 ) |
37 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑈 ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ∈ 𝑡 ) ) → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
38 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑈 ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ∈ 𝑡 ) ) → 𝐹 : ℕ0 ⟶ ( 𝒫 𝑋 ∩ Fin ) ) |
39 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑈 ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ∈ 𝑡 ) ) → ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ( 𝑦 𝐵 𝑛 ) ) |
40 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑈 ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ∈ 𝑡 ) ) → ∀ 𝑥 ∈ 𝐺 ( ( 𝑇 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑇 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) |
41 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑈 ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ∈ 𝑡 ) ) → 𝐶 𝐺 0 ) |
42 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑈 ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ∈ 𝑡 ) ) → 𝑈 ⊆ 𝐽 ) |
43 |
|
fvex |
⊢ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ∈ V |
44 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑈 ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ∈ 𝑡 ) ) → ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ∈ 𝑡 ) |
45 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑈 ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ∈ 𝑡 ) ) → 𝑡 ∈ 𝑈 ) |
46 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑈 ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ∈ 𝑡 ) ) → ( 1st ∘ 𝑀 ) ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ) |
47 |
1 2 3 4 37 38 39 40 41 10 11 42 43 44 45 46
|
heiborlem8 |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑈 ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ∈ 𝑡 ) ) → 𝜓 ) |
48 |
36 47
|
rexlimddv |
⊢ ( 𝜑 → 𝜓 ) |