Metamath Proof Explorer


Theorem heiborlem9

Description: Lemma for heibor . Discharge the hypotheses of heiborlem8 by applying caubl to get a convergent point and adding the open cover assumption. (Contributed by Jeff Madsen, 20-Jan-2014)

Ref Expression
Hypotheses heibor.1 𝐽 = ( MetOpen ‘ 𝐷 )
heibor.3 𝐾 = { 𝑢 ∣ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 𝑣 }
heibor.4 𝐺 = { ⟨ 𝑦 , 𝑛 ⟩ ∣ ( 𝑛 ∈ ℕ0𝑦 ∈ ( 𝐹𝑛 ) ∧ ( 𝑦 𝐵 𝑛 ) ∈ 𝐾 ) }
heibor.5 𝐵 = ( 𝑧𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) )
heibor.6 ( 𝜑𝐷 ∈ ( CMet ‘ 𝑋 ) )
heibor.7 ( 𝜑𝐹 : ℕ0 ⟶ ( 𝒫 𝑋 ∩ Fin ) )
heibor.8 ( 𝜑 → ∀ 𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ ( 𝐹𝑛 ) ( 𝑦 𝐵 𝑛 ) )
heibor.9 ( 𝜑 → ∀ 𝑥𝐺 ( ( 𝑇𝑥 ) 𝐺 ( ( 2nd𝑥 ) + 1 ) ∧ ( ( 𝐵𝑥 ) ∩ ( ( 𝑇𝑥 ) 𝐵 ( ( 2nd𝑥 ) + 1 ) ) ) ∈ 𝐾 ) )
heibor.10 ( 𝜑𝐶 𝐺 0 )
heibor.11 𝑆 = seq 0 ( 𝑇 , ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) )
heibor.12 𝑀 = ( 𝑛 ∈ ℕ ↦ ⟨ ( 𝑆𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) ⟩ )
heibor.13 ( 𝜑𝑈𝐽 )
heiborlem9.14 ( 𝜑 𝑈 = 𝑋 )
Assertion heiborlem9 ( 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 heibor.1 𝐽 = ( MetOpen ‘ 𝐷 )
2 heibor.3 𝐾 = { 𝑢 ∣ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 𝑣 }
3 heibor.4 𝐺 = { ⟨ 𝑦 , 𝑛 ⟩ ∣ ( 𝑛 ∈ ℕ0𝑦 ∈ ( 𝐹𝑛 ) ∧ ( 𝑦 𝐵 𝑛 ) ∈ 𝐾 ) }
4 heibor.5 𝐵 = ( 𝑧𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) )
5 heibor.6 ( 𝜑𝐷 ∈ ( CMet ‘ 𝑋 ) )
6 heibor.7 ( 𝜑𝐹 : ℕ0 ⟶ ( 𝒫 𝑋 ∩ Fin ) )
7 heibor.8 ( 𝜑 → ∀ 𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ ( 𝐹𝑛 ) ( 𝑦 𝐵 𝑛 ) )
8 heibor.9 ( 𝜑 → ∀ 𝑥𝐺 ( ( 𝑇𝑥 ) 𝐺 ( ( 2nd𝑥 ) + 1 ) ∧ ( ( 𝐵𝑥 ) ∩ ( ( 𝑇𝑥 ) 𝐵 ( ( 2nd𝑥 ) + 1 ) ) ) ∈ 𝐾 ) )
9 heibor.10 ( 𝜑𝐶 𝐺 0 )
10 heibor.11 𝑆 = seq 0 ( 𝑇 , ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) )
11 heibor.12 𝑀 = ( 𝑛 ∈ ℕ ↦ ⟨ ( 𝑆𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) ⟩ )
12 heibor.13 ( 𝜑𝑈𝐽 )
13 heiborlem9.14 ( 𝜑 𝑈 = 𝑋 )
14 cmetmet ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) )
15 metxmet ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
16 5 14 15 3syl ( 𝜑𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
17 1 mopntopon ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) )
18 16 17 syl ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
19 1 2 3 4 5 6 7 8 9 10 11 heiborlem5 ( 𝜑𝑀 : ℕ ⟶ ( 𝑋 × ℝ+ ) )
20 1 2 3 4 5 6 7 8 9 10 11 heiborlem6 ( 𝜑 → ∀ 𝑘 ∈ ℕ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ ( 𝑘 + 1 ) ) ) ⊆ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀𝑘 ) ) )
21 1 2 3 4 5 6 7 8 9 10 11 heiborlem7 𝑟 ∈ ℝ+𝑘 ∈ ℕ ( 2nd ‘ ( 𝑀𝑘 ) ) < 𝑟
22 21 a1i ( 𝜑 → ∀ 𝑟 ∈ ℝ+𝑘 ∈ ℕ ( 2nd ‘ ( 𝑀𝑘 ) ) < 𝑟 )
23 16 19 20 22 caubl ( 𝜑 → ( 1st𝑀 ) ∈ ( Cau ‘ 𝐷 ) )
24 1 cmetcau ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ ( 1st𝑀 ) ∈ ( Cau ‘ 𝐷 ) ) → ( 1st𝑀 ) ∈ dom ( ⇝𝑡𝐽 ) )
25 5 23 24 syl2anc ( 𝜑 → ( 1st𝑀 ) ∈ dom ( ⇝𝑡𝐽 ) )
26 1 methaus ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Haus )
27 16 26 syl ( 𝜑𝐽 ∈ Haus )
28 lmfun ( 𝐽 ∈ Haus → Fun ( ⇝𝑡𝐽 ) )
29 funfvbrb ( Fun ( ⇝𝑡𝐽 ) → ( ( 1st𝑀 ) ∈ dom ( ⇝𝑡𝐽 ) ↔ ( 1st𝑀 ) ( ⇝𝑡𝐽 ) ( ( ⇝𝑡𝐽 ) ‘ ( 1st𝑀 ) ) ) )
30 27 28 29 3syl ( 𝜑 → ( ( 1st𝑀 ) ∈ dom ( ⇝𝑡𝐽 ) ↔ ( 1st𝑀 ) ( ⇝𝑡𝐽 ) ( ( ⇝𝑡𝐽 ) ‘ ( 1st𝑀 ) ) ) )
31 25 30 mpbid ( 𝜑 → ( 1st𝑀 ) ( ⇝𝑡𝐽 ) ( ( ⇝𝑡𝐽 ) ‘ ( 1st𝑀 ) ) )
32 lmcl ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 1st𝑀 ) ( ⇝𝑡𝐽 ) ( ( ⇝𝑡𝐽 ) ‘ ( 1st𝑀 ) ) ) → ( ( ⇝𝑡𝐽 ) ‘ ( 1st𝑀 ) ) ∈ 𝑋 )
33 18 31 32 syl2anc ( 𝜑 → ( ( ⇝𝑡𝐽 ) ‘ ( 1st𝑀 ) ) ∈ 𝑋 )
34 33 13 eleqtrrd ( 𝜑 → ( ( ⇝𝑡𝐽 ) ‘ ( 1st𝑀 ) ) ∈ 𝑈 )
35 eluni2 ( ( ( ⇝𝑡𝐽 ) ‘ ( 1st𝑀 ) ) ∈ 𝑈 ↔ ∃ 𝑡𝑈 ( ( ⇝𝑡𝐽 ) ‘ ( 1st𝑀 ) ) ∈ 𝑡 )
36 34 35 sylib ( 𝜑 → ∃ 𝑡𝑈 ( ( ⇝𝑡𝐽 ) ‘ ( 1st𝑀 ) ) ∈ 𝑡 )
37 5 adantr ( ( 𝜑 ∧ ( 𝑡𝑈 ∧ ( ( ⇝𝑡𝐽 ) ‘ ( 1st𝑀 ) ) ∈ 𝑡 ) ) → 𝐷 ∈ ( CMet ‘ 𝑋 ) )
38 6 adantr ( ( 𝜑 ∧ ( 𝑡𝑈 ∧ ( ( ⇝𝑡𝐽 ) ‘ ( 1st𝑀 ) ) ∈ 𝑡 ) ) → 𝐹 : ℕ0 ⟶ ( 𝒫 𝑋 ∩ Fin ) )
39 7 adantr ( ( 𝜑 ∧ ( 𝑡𝑈 ∧ ( ( ⇝𝑡𝐽 ) ‘ ( 1st𝑀 ) ) ∈ 𝑡 ) ) → ∀ 𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ ( 𝐹𝑛 ) ( 𝑦 𝐵 𝑛 ) )
40 8 adantr ( ( 𝜑 ∧ ( 𝑡𝑈 ∧ ( ( ⇝𝑡𝐽 ) ‘ ( 1st𝑀 ) ) ∈ 𝑡 ) ) → ∀ 𝑥𝐺 ( ( 𝑇𝑥 ) 𝐺 ( ( 2nd𝑥 ) + 1 ) ∧ ( ( 𝐵𝑥 ) ∩ ( ( 𝑇𝑥 ) 𝐵 ( ( 2nd𝑥 ) + 1 ) ) ) ∈ 𝐾 ) )
41 9 adantr ( ( 𝜑 ∧ ( 𝑡𝑈 ∧ ( ( ⇝𝑡𝐽 ) ‘ ( 1st𝑀 ) ) ∈ 𝑡 ) ) → 𝐶 𝐺 0 )
42 12 adantr ( ( 𝜑 ∧ ( 𝑡𝑈 ∧ ( ( ⇝𝑡𝐽 ) ‘ ( 1st𝑀 ) ) ∈ 𝑡 ) ) → 𝑈𝐽 )
43 fvex ( ( ⇝𝑡𝐽 ) ‘ ( 1st𝑀 ) ) ∈ V
44 simprr ( ( 𝜑 ∧ ( 𝑡𝑈 ∧ ( ( ⇝𝑡𝐽 ) ‘ ( 1st𝑀 ) ) ∈ 𝑡 ) ) → ( ( ⇝𝑡𝐽 ) ‘ ( 1st𝑀 ) ) ∈ 𝑡 )
45 simprl ( ( 𝜑 ∧ ( 𝑡𝑈 ∧ ( ( ⇝𝑡𝐽 ) ‘ ( 1st𝑀 ) ) ∈ 𝑡 ) ) → 𝑡𝑈 )
46 31 adantr ( ( 𝜑 ∧ ( 𝑡𝑈 ∧ ( ( ⇝𝑡𝐽 ) ‘ ( 1st𝑀 ) ) ∈ 𝑡 ) ) → ( 1st𝑀 ) ( ⇝𝑡𝐽 ) ( ( ⇝𝑡𝐽 ) ‘ ( 1st𝑀 ) ) )
47 1 2 3 4 37 38 39 40 41 10 11 42 43 44 45 46 heiborlem8 ( ( 𝜑 ∧ ( 𝑡𝑈 ∧ ( ( ⇝𝑡𝐽 ) ‘ ( 1st𝑀 ) ) ∈ 𝑡 ) ) → 𝜓 )
48 36 47 rexlimddv ( 𝜑𝜓 )