Step |
Hyp |
Ref |
Expression |
1 |
|
hfmmval |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℂ ) → ( 𝐴 ·fn 𝑇 ) = ( 𝑥 ∈ ℋ ↦ ( 𝐴 · ( 𝑇 ‘ 𝑥 ) ) ) ) |
2 |
1
|
fveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℂ ) → ( ( 𝐴 ·fn 𝑇 ) ‘ 𝐵 ) = ( ( 𝑥 ∈ ℋ ↦ ( 𝐴 · ( 𝑇 ‘ 𝑥 ) ) ) ‘ 𝐵 ) ) |
3 |
|
fveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝐵 ) ) |
4 |
3
|
oveq2d |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 · ( 𝑇 ‘ 𝑥 ) ) = ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) ) |
5 |
|
eqid |
⊢ ( 𝑥 ∈ ℋ ↦ ( 𝐴 · ( 𝑇 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℋ ↦ ( 𝐴 · ( 𝑇 ‘ 𝑥 ) ) ) |
6 |
|
ovex |
⊢ ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) ∈ V |
7 |
4 5 6
|
fvmpt |
⊢ ( 𝐵 ∈ ℋ → ( ( 𝑥 ∈ ℋ ↦ ( 𝐴 · ( 𝑇 ‘ 𝑥 ) ) ) ‘ 𝐵 ) = ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) ) |
8 |
2 7
|
sylan9eq |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℂ ) ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·fn 𝑇 ) ‘ 𝐵 ) = ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) ) |
9 |
8
|
3impa |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·fn 𝑇 ) ‘ 𝐵 ) = ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) ) |