| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnex |
⊢ ℂ ∈ V |
| 2 |
|
ax-hilex |
⊢ ℋ ∈ V |
| 3 |
1 2
|
elmap |
⊢ ( 𝑆 ∈ ( ℂ ↑m ℋ ) ↔ 𝑆 : ℋ ⟶ ℂ ) |
| 4 |
1 2
|
elmap |
⊢ ( 𝑇 ∈ ( ℂ ↑m ℋ ) ↔ 𝑇 : ℋ ⟶ ℂ ) |
| 5 |
|
fveq1 |
⊢ ( 𝑓 = 𝑆 → ( 𝑓 ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) |
| 6 |
5
|
oveq1d |
⊢ ( 𝑓 = 𝑆 → ( ( 𝑓 ‘ 𝑥 ) + ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝑆 ‘ 𝑥 ) + ( 𝑔 ‘ 𝑥 ) ) ) |
| 7 |
6
|
mpteq2dv |
⊢ ( 𝑓 = 𝑆 → ( 𝑥 ∈ ℋ ↦ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑆 ‘ 𝑥 ) + ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 8 |
|
fveq1 |
⊢ ( 𝑔 = 𝑇 → ( 𝑔 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) |
| 9 |
8
|
oveq2d |
⊢ ( 𝑔 = 𝑇 → ( ( 𝑆 ‘ 𝑥 ) + ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝑆 ‘ 𝑥 ) + ( 𝑇 ‘ 𝑥 ) ) ) |
| 10 |
9
|
mpteq2dv |
⊢ ( 𝑔 = 𝑇 → ( 𝑥 ∈ ℋ ↦ ( ( 𝑆 ‘ 𝑥 ) + ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑆 ‘ 𝑥 ) + ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 11 |
|
df-hfsum |
⊢ +fn = ( 𝑓 ∈ ( ℂ ↑m ℋ ) , 𝑔 ∈ ( ℂ ↑m ℋ ) ↦ ( 𝑥 ∈ ℋ ↦ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 12 |
2
|
mptex |
⊢ ( 𝑥 ∈ ℋ ↦ ( ( 𝑆 ‘ 𝑥 ) + ( 𝑇 ‘ 𝑥 ) ) ) ∈ V |
| 13 |
7 10 11 12
|
ovmpo |
⊢ ( ( 𝑆 ∈ ( ℂ ↑m ℋ ) ∧ 𝑇 ∈ ( ℂ ↑m ℋ ) ) → ( 𝑆 +fn 𝑇 ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑆 ‘ 𝑥 ) + ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 14 |
3 4 13
|
syl2anbr |
⊢ ( ( 𝑆 : ℋ ⟶ ℂ ∧ 𝑇 : ℋ ⟶ ℂ ) → ( 𝑆 +fn 𝑇 ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑆 ‘ 𝑥 ) + ( 𝑇 ‘ 𝑥 ) ) ) ) |