Metamath Proof Explorer


Theorem hfsval

Description: Value of the sum of two Hilbert space functionals. (Contributed by NM, 23-May-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Assertion hfsval ( ( 𝑆 : ℋ ⟶ ℂ ∧ 𝑇 : ℋ ⟶ ℂ ∧ 𝐴 ∈ ℋ ) → ( ( 𝑆 +fn 𝑇 ) ‘ 𝐴 ) = ( ( 𝑆𝐴 ) + ( 𝑇𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 hfsmval ( ( 𝑆 : ℋ ⟶ ℂ ∧ 𝑇 : ℋ ⟶ ℂ ) → ( 𝑆 +fn 𝑇 ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑆𝑥 ) + ( 𝑇𝑥 ) ) ) )
2 1 fveq1d ( ( 𝑆 : ℋ ⟶ ℂ ∧ 𝑇 : ℋ ⟶ ℂ ) → ( ( 𝑆 +fn 𝑇 ) ‘ 𝐴 ) = ( ( 𝑥 ∈ ℋ ↦ ( ( 𝑆𝑥 ) + ( 𝑇𝑥 ) ) ) ‘ 𝐴 ) )
3 fveq2 ( 𝑥 = 𝐴 → ( 𝑆𝑥 ) = ( 𝑆𝐴 ) )
4 fveq2 ( 𝑥 = 𝐴 → ( 𝑇𝑥 ) = ( 𝑇𝐴 ) )
5 3 4 oveq12d ( 𝑥 = 𝐴 → ( ( 𝑆𝑥 ) + ( 𝑇𝑥 ) ) = ( ( 𝑆𝐴 ) + ( 𝑇𝐴 ) ) )
6 eqid ( 𝑥 ∈ ℋ ↦ ( ( 𝑆𝑥 ) + ( 𝑇𝑥 ) ) ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑆𝑥 ) + ( 𝑇𝑥 ) ) )
7 ovex ( ( 𝑆𝐴 ) + ( 𝑇𝐴 ) ) ∈ V
8 5 6 7 fvmpt ( 𝐴 ∈ ℋ → ( ( 𝑥 ∈ ℋ ↦ ( ( 𝑆𝑥 ) + ( 𝑇𝑥 ) ) ) ‘ 𝐴 ) = ( ( 𝑆𝐴 ) + ( 𝑇𝐴 ) ) )
9 2 8 sylan9eq ( ( ( 𝑆 : ℋ ⟶ ℂ ∧ 𝑇 : ℋ ⟶ ℂ ) ∧ 𝐴 ∈ ℋ ) → ( ( 𝑆 +fn 𝑇 ) ‘ 𝐴 ) = ( ( 𝑆𝐴 ) + ( 𝑇𝐴 ) ) )
10 9 3impa ( ( 𝑆 : ℋ ⟶ ℂ ∧ 𝑇 : ℋ ⟶ ℂ ∧ 𝐴 ∈ ℋ ) → ( ( 𝑆 +fn 𝑇 ) ‘ 𝐴 ) = ( ( 𝑆𝐴 ) + ( 𝑇𝐴 ) ) )