| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hgmapadd.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
hgmapadd.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
hgmapadd.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
| 4 |
|
hgmapadd.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 5 |
|
hgmapadd.p |
⊢ + = ( +g ‘ 𝑅 ) |
| 6 |
|
hgmapadd.g |
⊢ 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) |
| 7 |
|
hgmapadd.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 8 |
|
hgmapadd.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 9 |
|
hgmapadd.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
| 11 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
| 12 |
1 2 10 11 7
|
dvh1dim |
⊢ ( 𝜑 → ∃ 𝑡 ∈ ( Base ‘ 𝑈 ) 𝑡 ≠ ( 0g ‘ 𝑈 ) ) |
| 13 |
|
eqid |
⊢ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
| 14 |
1 13 7
|
lcdlmod |
⊢ ( 𝜑 → ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ∈ LMod ) |
| 15 |
14
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ∈ LMod ) |
| 16 |
|
eqid |
⊢ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 17 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) = ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 18 |
7
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 19 |
8
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → 𝑋 ∈ 𝐵 ) |
| 20 |
1 2 3 4 13 16 17 6 18 19
|
hgmapdcl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝐺 ‘ 𝑋 ) ∈ ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) |
| 21 |
1 2 3 4 13 16 17 6 7 9
|
hgmapdcl |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑌 ) ∈ ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) |
| 22 |
21
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝐺 ‘ 𝑌 ) ∈ ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) |
| 23 |
|
eqid |
⊢ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 24 |
|
eqid |
⊢ ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
| 25 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → 𝑡 ∈ ( Base ‘ 𝑈 ) ) |
| 26 |
1 2 10 13 23 24 18 25
|
hdmapcl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 27 |
|
eqid |
⊢ ( +g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( +g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 28 |
|
eqid |
⊢ ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 29 |
|
eqid |
⊢ ( +g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) = ( +g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 30 |
23 27 16 28 17 29
|
lmodvsdir |
⊢ ( ( ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ∈ LMod ∧ ( ( 𝐺 ‘ 𝑋 ) ∈ ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ∧ ( 𝐺 ‘ 𝑌 ) ∈ ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ∧ ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) → ( ( ( 𝐺 ‘ 𝑋 ) ( +g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( 𝐺 ‘ 𝑌 ) ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) ) = ( ( ( 𝐺 ‘ 𝑋 ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) ) ( +g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( 𝐺 ‘ 𝑌 ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) ) ) ) |
| 31 |
15 20 22 26 30
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → ( ( ( 𝐺 ‘ 𝑋 ) ( +g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( 𝐺 ‘ 𝑌 ) ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) ) = ( ( ( 𝐺 ‘ 𝑋 ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) ) ( +g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( 𝐺 ‘ 𝑌 ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) ) ) ) |
| 32 |
1 2 7
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 33 |
32
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → 𝑈 ∈ LMod ) |
| 34 |
9
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → 𝑌 ∈ 𝐵 ) |
| 35 |
|
eqid |
⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) |
| 36 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑈 ) = ( ·𝑠 ‘ 𝑈 ) |
| 37 |
10 35 3 36 4 5
|
lmodvsdir |
⊢ ( ( 𝑈 ∈ LMod ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( 𝑋 + 𝑌 ) ( ·𝑠 ‘ 𝑈 ) 𝑡 ) = ( ( 𝑋 ( ·𝑠 ‘ 𝑈 ) 𝑡 ) ( +g ‘ 𝑈 ) ( 𝑌 ( ·𝑠 ‘ 𝑈 ) 𝑡 ) ) ) |
| 38 |
33 19 34 25 37
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → ( ( 𝑋 + 𝑌 ) ( ·𝑠 ‘ 𝑈 ) 𝑡 ) = ( ( 𝑋 ( ·𝑠 ‘ 𝑈 ) 𝑡 ) ( +g ‘ 𝑈 ) ( 𝑌 ( ·𝑠 ‘ 𝑈 ) 𝑡 ) ) ) |
| 39 |
38
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑋 + 𝑌 ) ( ·𝑠 ‘ 𝑈 ) 𝑡 ) ) = ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑋 ( ·𝑠 ‘ 𝑈 ) 𝑡 ) ( +g ‘ 𝑈 ) ( 𝑌 ( ·𝑠 ‘ 𝑈 ) 𝑡 ) ) ) ) |
| 40 |
10 3 36 4
|
lmodvscl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ 𝐵 ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ) → ( 𝑋 ( ·𝑠 ‘ 𝑈 ) 𝑡 ) ∈ ( Base ‘ 𝑈 ) ) |
| 41 |
33 19 25 40
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝑋 ( ·𝑠 ‘ 𝑈 ) 𝑡 ) ∈ ( Base ‘ 𝑈 ) ) |
| 42 |
10 3 36 4
|
lmodvscl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑌 ∈ 𝐵 ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ) → ( 𝑌 ( ·𝑠 ‘ 𝑈 ) 𝑡 ) ∈ ( Base ‘ 𝑈 ) ) |
| 43 |
33 34 25 42
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝑌 ( ·𝑠 ‘ 𝑈 ) 𝑡 ) ∈ ( Base ‘ 𝑈 ) ) |
| 44 |
1 2 10 35 13 27 24 18 41 43
|
hdmapadd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑋 ( ·𝑠 ‘ 𝑈 ) 𝑡 ) ( +g ‘ 𝑈 ) ( 𝑌 ( ·𝑠 ‘ 𝑈 ) 𝑡 ) ) ) = ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋 ( ·𝑠 ‘ 𝑈 ) 𝑡 ) ) ( +g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑌 ( ·𝑠 ‘ 𝑈 ) 𝑡 ) ) ) ) |
| 45 |
1 2 10 36 3 4 13 28 24 6 18 25 19
|
hgmapvs |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋 ( ·𝑠 ‘ 𝑈 ) 𝑡 ) ) = ( ( 𝐺 ‘ 𝑋 ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) ) ) |
| 46 |
1 2 10 36 3 4 13 28 24 6 18 25 34
|
hgmapvs |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑌 ( ·𝑠 ‘ 𝑈 ) 𝑡 ) ) = ( ( 𝐺 ‘ 𝑌 ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) ) ) |
| 47 |
45 46
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋 ( ·𝑠 ‘ 𝑈 ) 𝑡 ) ) ( +g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑌 ( ·𝑠 ‘ 𝑈 ) 𝑡 ) ) ) = ( ( ( 𝐺 ‘ 𝑋 ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) ) ( +g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( 𝐺 ‘ 𝑌 ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) ) ) ) |
| 48 |
39 44 47
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → ( ( ( 𝐺 ‘ 𝑋 ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) ) ( +g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( 𝐺 ‘ 𝑌 ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) ) ) = ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑋 + 𝑌 ) ( ·𝑠 ‘ 𝑈 ) 𝑡 ) ) ) |
| 49 |
3 4 5
|
lmodacl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
| 50 |
32 8 9 49
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
| 51 |
50
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
| 52 |
1 2 10 36 3 4 13 28 24 6 18 25 51
|
hgmapvs |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑋 + 𝑌 ) ( ·𝑠 ‘ 𝑈 ) 𝑡 ) ) = ( ( 𝐺 ‘ ( 𝑋 + 𝑌 ) ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) ) ) |
| 53 |
31 48 52
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → ( ( 𝐺 ‘ ( 𝑋 + 𝑌 ) ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) ) = ( ( ( 𝐺 ‘ 𝑋 ) ( +g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( 𝐺 ‘ 𝑌 ) ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) ) ) |
| 54 |
|
eqid |
⊢ ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 55 |
1 13 7
|
lcdlvec |
⊢ ( 𝜑 → ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ∈ LVec ) |
| 56 |
55
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ∈ LVec ) |
| 57 |
1 2 3 4 13 16 17 6 7 50
|
hgmapdcl |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝑋 + 𝑌 ) ) ∈ ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) |
| 58 |
57
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝐺 ‘ ( 𝑋 + 𝑌 ) ) ∈ ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) |
| 59 |
1 2 3 4 13 16 17 6 7 8
|
hgmapdcl |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) ∈ ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) |
| 60 |
16 17 29
|
lmodacl |
⊢ ( ( ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ∈ LMod ∧ ( 𝐺 ‘ 𝑋 ) ∈ ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ∧ ( 𝐺 ‘ 𝑌 ) ∈ ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) → ( ( 𝐺 ‘ 𝑋 ) ( +g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( 𝐺 ‘ 𝑌 ) ) ∈ ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) |
| 61 |
14 59 21 60
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑋 ) ( +g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( 𝐺 ‘ 𝑌 ) ) ∈ ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) |
| 62 |
61
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → ( ( 𝐺 ‘ 𝑋 ) ( +g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( 𝐺 ‘ 𝑌 ) ) ∈ ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) |
| 63 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → 𝑡 ≠ ( 0g ‘ 𝑈 ) ) |
| 64 |
1 2 10 11 13 54 24 18 25
|
hdmapeq0 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ↔ 𝑡 = ( 0g ‘ 𝑈 ) ) ) |
| 65 |
64
|
necon3bid |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) ≠ ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ↔ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) ) |
| 66 |
63 65
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) ≠ ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 67 |
23 28 16 17 54 56 58 62 26 66
|
lvecvscan2 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → ( ( ( 𝐺 ‘ ( 𝑋 + 𝑌 ) ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) ) = ( ( ( 𝐺 ‘ 𝑋 ) ( +g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( 𝐺 ‘ 𝑌 ) ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) ) ↔ ( 𝐺 ‘ ( 𝑋 + 𝑌 ) ) = ( ( 𝐺 ‘ 𝑋 ) ( +g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( 𝐺 ‘ 𝑌 ) ) ) ) |
| 68 |
53 67
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝐺 ‘ ( 𝑋 + 𝑌 ) ) = ( ( 𝐺 ‘ 𝑋 ) ( +g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( 𝐺 ‘ 𝑌 ) ) ) |
| 69 |
68
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑡 ∈ ( Base ‘ 𝑈 ) 𝑡 ≠ ( 0g ‘ 𝑈 ) → ( 𝐺 ‘ ( 𝑋 + 𝑌 ) ) = ( ( 𝐺 ‘ 𝑋 ) ( +g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( 𝐺 ‘ 𝑌 ) ) ) ) |
| 70 |
12 69
|
mpd |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝑋 + 𝑌 ) ) = ( ( 𝐺 ‘ 𝑋 ) ( +g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( 𝐺 ‘ 𝑌 ) ) ) |
| 71 |
1 2 3 5 13 16 29 7
|
lcdsadd |
⊢ ( 𝜑 → ( +g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) = + ) |
| 72 |
71
|
oveqd |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑋 ) ( +g ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( 𝐺 ‘ 𝑌 ) ) = ( ( 𝐺 ‘ 𝑋 ) + ( 𝐺 ‘ 𝑌 ) ) ) |
| 73 |
70 72
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝑋 + 𝑌 ) ) = ( ( 𝐺 ‘ 𝑋 ) + ( 𝐺 ‘ 𝑌 ) ) ) |