| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmapglem6.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
hdmapglem6.e |
⊢ 𝐸 = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 |
| 3 |
|
hdmapglem6.o |
⊢ 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
hdmapglem6.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
hdmapglem6.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 6 |
|
hdmapglem6.q |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
| 7 |
|
hdmapglem6.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
| 8 |
|
hdmapglem6.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 9 |
|
hdmapglem6.t |
⊢ × = ( .r ‘ 𝑅 ) |
| 10 |
|
hdmapglem6.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 11 |
|
hdmapglem6.i |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 12 |
|
hdmapglem6.n |
⊢ 𝑁 = ( invr ‘ 𝑅 ) |
| 13 |
|
hdmapglem6.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
| 14 |
|
hdmapglem6.g |
⊢ 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) |
| 15 |
|
hdmapglem6.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 16 |
|
hdmapglem6.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ) |
| 17 |
|
hdmapglem6.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝑂 ‘ { 𝐸 } ) ) |
| 18 |
|
hdmapglem6.d |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝑂 ‘ { 𝐸 } ) ) |
| 19 |
|
hdmapglem6.cd |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) = 1 ) |
| 20 |
|
hdmapglem6.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐵 ∖ { 0 } ) ) |
| 21 |
|
hdmapglem6.yx |
⊢ ( 𝜑 → ( 𝑌 × ( 𝐺 ‘ 𝑋 ) ) = 1 ) |
| 22 |
1 4 15
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 23 |
7
|
lmodring |
⊢ ( 𝑈 ∈ LMod → 𝑅 ∈ Ring ) |
| 24 |
22 23
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 25 |
16
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 26 |
1 4 7 8 14 15 25
|
hgmapcl |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) ∈ 𝐵 ) |
| 27 |
1 4 7 8 14 15 26
|
hgmapcl |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) ) ∈ 𝐵 ) |
| 28 |
20
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 29 |
1 4 7 8 14 15 28
|
hgmapcl |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑌 ) ∈ 𝐵 ) |
| 30 |
1 4 15
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
| 31 |
7
|
lvecdrng |
⊢ ( 𝑈 ∈ LVec → 𝑅 ∈ DivRing ) |
| 32 |
30 31
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |
| 33 |
|
eldifsni |
⊢ ( 𝑌 ∈ ( 𝐵 ∖ { 0 } ) → 𝑌 ≠ 0 ) |
| 34 |
20 33
|
syl |
⊢ ( 𝜑 → 𝑌 ≠ 0 ) |
| 35 |
1 4 7 8 10 14 15 28
|
hgmapeq0 |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑌 ) = 0 ↔ 𝑌 = 0 ) ) |
| 36 |
35
|
necon3bid |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑌 ) ≠ 0 ↔ 𝑌 ≠ 0 ) ) |
| 37 |
34 36
|
mpbird |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑌 ) ≠ 0 ) |
| 38 |
8 10 12
|
drnginvrcl |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( 𝐺 ‘ 𝑌 ) ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑌 ) ≠ 0 ) → ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) ) ∈ 𝐵 ) |
| 39 |
32 29 37 38
|
syl3anc |
⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) ) ∈ 𝐵 ) |
| 40 |
8 9
|
ringass |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) ) ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑌 ) ∈ 𝐵 ∧ ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) ) ∈ 𝐵 ) ) → ( ( ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐺 ‘ 𝑌 ) ) × ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) ) ) = ( ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( ( 𝐺 ‘ 𝑌 ) × ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ) ) |
| 41 |
24 27 29 39 40
|
syl13anc |
⊢ ( 𝜑 → ( ( ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐺 ‘ 𝑌 ) ) × ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) ) ) = ( ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( ( 𝐺 ‘ 𝑌 ) × ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ) ) |
| 42 |
8 10 9 11 12
|
drnginvrr |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( 𝐺 ‘ 𝑌 ) ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑌 ) ≠ 0 ) → ( ( 𝐺 ‘ 𝑌 ) × ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) ) ) = 1 ) |
| 43 |
32 29 37 42
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑌 ) × ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) ) ) = 1 ) |
| 44 |
43
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( ( 𝐺 ‘ 𝑌 ) × ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ) = ( ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) ) × 1 ) ) |
| 45 |
8 9 11
|
ringridm |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) ) ∈ 𝐵 ) → ( ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) ) × 1 ) = ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) ) ) |
| 46 |
24 27 45
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) ) × 1 ) = ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) ) ) |
| 47 |
41 44 46
|
3eqtrrd |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) ) = ( ( ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐺 ‘ 𝑌 ) ) × ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ) |
| 48 |
21
|
fveq2d |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝑌 × ( 𝐺 ‘ 𝑋 ) ) ) = ( 𝐺 ‘ 1 ) ) |
| 49 |
1 4 7 8 9 14 15 28 26
|
hgmapmul |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝑌 × ( 𝐺 ‘ 𝑋 ) ) ) = ( ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐺 ‘ 𝑌 ) ) ) |
| 50 |
48 49
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) = ( ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐺 ‘ 𝑌 ) ) ) |
| 51 |
19
|
fveq2d |
⊢ ( 𝜑 → ( 𝐺 ‘ ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) ) = ( 𝐺 ‘ 1 ) ) |
| 52 |
|
eqid |
⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) |
| 53 |
|
eqid |
⊢ ( -g ‘ 𝑈 ) = ( -g ‘ 𝑈 ) |
| 54 |
1 2 3 4 5 52 53 6 7 8 9 10 13 14 15 17 18 28 25
|
hdmapglem5 |
⊢ ( 𝜑 → ( 𝐺 ‘ ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) ) = ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐷 ) ) |
| 55 |
51 54
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) = ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐷 ) ) |
| 56 |
50 55
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐺 ‘ 𝑌 ) ) = ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐷 ) ) |
| 57 |
21 19
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑌 × ( 𝐺 ‘ 𝑋 ) ) = ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) ) |
| 58 |
1 2 3 4 5 52 53 6 7 8 9 10 13 14 15 17 18 28 25 57
|
hdmapinvlem4 |
⊢ ( 𝜑 → ( 𝑋 × ( 𝐺 ‘ 𝑌 ) ) = ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐷 ) ) |
| 59 |
56 58
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐺 ‘ 𝑌 ) ) = ( 𝑋 × ( 𝐺 ‘ 𝑌 ) ) ) |
| 60 |
59
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐺 ‘ 𝑌 ) ) × ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) ) ) = ( ( 𝑋 × ( 𝐺 ‘ 𝑌 ) ) × ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ) |
| 61 |
8 9
|
ringass |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑌 ) ∈ 𝐵 ∧ ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) ) ∈ 𝐵 ) ) → ( ( 𝑋 × ( 𝐺 ‘ 𝑌 ) ) × ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) ) ) = ( 𝑋 × ( ( 𝐺 ‘ 𝑌 ) × ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ) ) |
| 62 |
24 25 29 39 61
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑋 × ( 𝐺 ‘ 𝑌 ) ) × ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) ) ) = ( 𝑋 × ( ( 𝐺 ‘ 𝑌 ) × ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ) ) |
| 63 |
43
|
oveq2d |
⊢ ( 𝜑 → ( 𝑋 × ( ( 𝐺 ‘ 𝑌 ) × ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ) = ( 𝑋 × 1 ) ) |
| 64 |
8 9 11
|
ringridm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 × 1 ) = 𝑋 ) |
| 65 |
24 25 64
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 × 1 ) = 𝑋 ) |
| 66 |
62 63 65
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑋 × ( 𝐺 ‘ 𝑌 ) ) × ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) ) ) = 𝑋 ) |
| 67 |
47 60 66
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) ) = 𝑋 ) |