Step |
Hyp |
Ref |
Expression |
1 |
|
hgt749d.o |
⊢ 𝑂 = { 𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧 } |
2 |
|
hgt749d.n |
⊢ ( 𝜑 → 𝑁 ∈ 𝑂 ) |
3 |
|
hgt749d.1 |
⊢ ( 𝜑 → ( ; 1 0 ↑ ; 2 7 ) ≤ 𝑁 ) |
4 |
|
breq2 |
⊢ ( 𝑛 = 𝑁 → ( ( ; 1 0 ↑ ; 2 7 ) ≤ 𝑛 ↔ ( ; 1 0 ↑ ; 2 7 ) ≤ 𝑁 ) ) |
5 |
|
oveq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 ↑ 2 ) = ( 𝑁 ↑ 2 ) ) |
6 |
5
|
oveq2d |
⊢ ( 𝑛 = 𝑁 → ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) · ( 𝑛 ↑ 2 ) ) = ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) · ( 𝑁 ↑ 2 ) ) ) |
7 |
|
oveq2 |
⊢ ( 𝑛 = 𝑁 → ( ( Λ ∘f · ℎ ) vts 𝑛 ) = ( ( Λ ∘f · ℎ ) vts 𝑁 ) ) |
8 |
7
|
fveq1d |
⊢ ( 𝑛 = 𝑁 → ( ( ( Λ ∘f · ℎ ) vts 𝑛 ) ‘ 𝑥 ) = ( ( ( Λ ∘f · ℎ ) vts 𝑁 ) ‘ 𝑥 ) ) |
9 |
|
oveq2 |
⊢ ( 𝑛 = 𝑁 → ( ( Λ ∘f · 𝑘 ) vts 𝑛 ) = ( ( Λ ∘f · 𝑘 ) vts 𝑁 ) ) |
10 |
9
|
fveq1d |
⊢ ( 𝑛 = 𝑁 → ( ( ( Λ ∘f · 𝑘 ) vts 𝑛 ) ‘ 𝑥 ) = ( ( ( Λ ∘f · 𝑘 ) vts 𝑁 ) ‘ 𝑥 ) ) |
11 |
10
|
oveq1d |
⊢ ( 𝑛 = 𝑁 → ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) = ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑁 ) ‘ 𝑥 ) ↑ 2 ) ) |
12 |
8 11
|
oveq12d |
⊢ ( 𝑛 = 𝑁 → ( ( ( ( Λ ∘f · ℎ ) vts 𝑛 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) ) = ( ( ( ( Λ ∘f · ℎ ) vts 𝑁 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑁 ) ‘ 𝑥 ) ↑ 2 ) ) ) |
13 |
|
negeq |
⊢ ( 𝑛 = 𝑁 → - 𝑛 = - 𝑁 ) |
14 |
13
|
oveq1d |
⊢ ( 𝑛 = 𝑁 → ( - 𝑛 · 𝑥 ) = ( - 𝑁 · 𝑥 ) ) |
15 |
14
|
oveq2d |
⊢ ( 𝑛 = 𝑁 → ( ( i · ( 2 · π ) ) · ( - 𝑛 · 𝑥 ) ) = ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) |
16 |
15
|
fveq2d |
⊢ ( 𝑛 = 𝑁 → ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑛 · 𝑥 ) ) ) = ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) |
17 |
12 16
|
oveq12d |
⊢ ( 𝑛 = 𝑁 → ( ( ( ( ( Λ ∘f · ℎ ) vts 𝑛 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑛 · 𝑥 ) ) ) ) = ( ( ( ( ( Λ ∘f · ℎ ) vts 𝑁 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑁 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) ) |
18 |
17
|
adantr |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → ( ( ( ( ( Λ ∘f · ℎ ) vts 𝑛 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑛 · 𝑥 ) ) ) ) = ( ( ( ( ( Λ ∘f · ℎ ) vts 𝑁 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑁 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) ) |
19 |
18
|
itgeq2dv |
⊢ ( 𝑛 = 𝑁 → ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ ∘f · ℎ ) vts 𝑛 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑛 · 𝑥 ) ) ) ) d 𝑥 = ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ ∘f · ℎ ) vts 𝑁 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑁 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) d 𝑥 ) |
20 |
6 19
|
breq12d |
⊢ ( 𝑛 = 𝑁 → ( ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) · ( 𝑛 ↑ 2 ) ) ≤ ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ ∘f · ℎ ) vts 𝑛 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑛 · 𝑥 ) ) ) ) d 𝑥 ↔ ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) · ( 𝑁 ↑ 2 ) ) ≤ ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ ∘f · ℎ ) vts 𝑁 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑁 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) d 𝑥 ) ) |
21 |
20
|
3anbi3d |
⊢ ( 𝑛 = 𝑁 → ( ( ∀ 𝑚 ∈ ℕ ( 𝑘 ‘ 𝑚 ) ≤ ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ∧ ∀ 𝑚 ∈ ℕ ( ℎ ‘ 𝑚 ) ≤ ( 1 . _ 4 _ 1 4 ) ∧ ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) · ( 𝑛 ↑ 2 ) ) ≤ ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ ∘f · ℎ ) vts 𝑛 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑛 · 𝑥 ) ) ) ) d 𝑥 ) ↔ ( ∀ 𝑚 ∈ ℕ ( 𝑘 ‘ 𝑚 ) ≤ ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ∧ ∀ 𝑚 ∈ ℕ ( ℎ ‘ 𝑚 ) ≤ ( 1 . _ 4 _ 1 4 ) ∧ ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) · ( 𝑁 ↑ 2 ) ) ≤ ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ ∘f · ℎ ) vts 𝑁 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑁 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) d 𝑥 ) ) ) |
22 |
21
|
rexbidv |
⊢ ( 𝑛 = 𝑁 → ( ∃ 𝑘 ∈ ( ( 0 [,) +∞ ) ↑m ℕ ) ( ∀ 𝑚 ∈ ℕ ( 𝑘 ‘ 𝑚 ) ≤ ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ∧ ∀ 𝑚 ∈ ℕ ( ℎ ‘ 𝑚 ) ≤ ( 1 . _ 4 _ 1 4 ) ∧ ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) · ( 𝑛 ↑ 2 ) ) ≤ ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ ∘f · ℎ ) vts 𝑛 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑛 · 𝑥 ) ) ) ) d 𝑥 ) ↔ ∃ 𝑘 ∈ ( ( 0 [,) +∞ ) ↑m ℕ ) ( ∀ 𝑚 ∈ ℕ ( 𝑘 ‘ 𝑚 ) ≤ ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ∧ ∀ 𝑚 ∈ ℕ ( ℎ ‘ 𝑚 ) ≤ ( 1 . _ 4 _ 1 4 ) ∧ ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) · ( 𝑁 ↑ 2 ) ) ≤ ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ ∘f · ℎ ) vts 𝑁 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑁 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) d 𝑥 ) ) ) |
23 |
22
|
rexbidv |
⊢ ( 𝑛 = 𝑁 → ( ∃ ℎ ∈ ( ( 0 [,) +∞ ) ↑m ℕ ) ∃ 𝑘 ∈ ( ( 0 [,) +∞ ) ↑m ℕ ) ( ∀ 𝑚 ∈ ℕ ( 𝑘 ‘ 𝑚 ) ≤ ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ∧ ∀ 𝑚 ∈ ℕ ( ℎ ‘ 𝑚 ) ≤ ( 1 . _ 4 _ 1 4 ) ∧ ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) · ( 𝑛 ↑ 2 ) ) ≤ ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ ∘f · ℎ ) vts 𝑛 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑛 · 𝑥 ) ) ) ) d 𝑥 ) ↔ ∃ ℎ ∈ ( ( 0 [,) +∞ ) ↑m ℕ ) ∃ 𝑘 ∈ ( ( 0 [,) +∞ ) ↑m ℕ ) ( ∀ 𝑚 ∈ ℕ ( 𝑘 ‘ 𝑚 ) ≤ ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ∧ ∀ 𝑚 ∈ ℕ ( ℎ ‘ 𝑚 ) ≤ ( 1 . _ 4 _ 1 4 ) ∧ ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) · ( 𝑁 ↑ 2 ) ) ≤ ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ ∘f · ℎ ) vts 𝑁 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑁 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) d 𝑥 ) ) ) |
24 |
4 23
|
imbi12d |
⊢ ( 𝑛 = 𝑁 → ( ( ( ; 1 0 ↑ ; 2 7 ) ≤ 𝑛 → ∃ ℎ ∈ ( ( 0 [,) +∞ ) ↑m ℕ ) ∃ 𝑘 ∈ ( ( 0 [,) +∞ ) ↑m ℕ ) ( ∀ 𝑚 ∈ ℕ ( 𝑘 ‘ 𝑚 ) ≤ ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ∧ ∀ 𝑚 ∈ ℕ ( ℎ ‘ 𝑚 ) ≤ ( 1 . _ 4 _ 1 4 ) ∧ ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) · ( 𝑛 ↑ 2 ) ) ≤ ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ ∘f · ℎ ) vts 𝑛 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑛 · 𝑥 ) ) ) ) d 𝑥 ) ) ↔ ( ( ; 1 0 ↑ ; 2 7 ) ≤ 𝑁 → ∃ ℎ ∈ ( ( 0 [,) +∞ ) ↑m ℕ ) ∃ 𝑘 ∈ ( ( 0 [,) +∞ ) ↑m ℕ ) ( ∀ 𝑚 ∈ ℕ ( 𝑘 ‘ 𝑚 ) ≤ ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ∧ ∀ 𝑚 ∈ ℕ ( ℎ ‘ 𝑚 ) ≤ ( 1 . _ 4 _ 1 4 ) ∧ ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) · ( 𝑁 ↑ 2 ) ) ≤ ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ ∘f · ℎ ) vts 𝑁 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑁 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) d 𝑥 ) ) ) ) |
25 |
|
ax-hgt749 |
⊢ ∀ 𝑛 ∈ { 𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧 } ( ( ; 1 0 ↑ ; 2 7 ) ≤ 𝑛 → ∃ ℎ ∈ ( ( 0 [,) +∞ ) ↑m ℕ ) ∃ 𝑘 ∈ ( ( 0 [,) +∞ ) ↑m ℕ ) ( ∀ 𝑚 ∈ ℕ ( 𝑘 ‘ 𝑚 ) ≤ ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ∧ ∀ 𝑚 ∈ ℕ ( ℎ ‘ 𝑚 ) ≤ ( 1 . _ 4 _ 1 4 ) ∧ ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) · ( 𝑛 ↑ 2 ) ) ≤ ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ ∘f · ℎ ) vts 𝑛 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑛 · 𝑥 ) ) ) ) d 𝑥 ) ) |
26 |
25
|
a1i |
⊢ ( 𝜑 → ∀ 𝑛 ∈ { 𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧 } ( ( ; 1 0 ↑ ; 2 7 ) ≤ 𝑛 → ∃ ℎ ∈ ( ( 0 [,) +∞ ) ↑m ℕ ) ∃ 𝑘 ∈ ( ( 0 [,) +∞ ) ↑m ℕ ) ( ∀ 𝑚 ∈ ℕ ( 𝑘 ‘ 𝑚 ) ≤ ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ∧ ∀ 𝑚 ∈ ℕ ( ℎ ‘ 𝑚 ) ≤ ( 1 . _ 4 _ 1 4 ) ∧ ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) · ( 𝑛 ↑ 2 ) ) ≤ ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ ∘f · ℎ ) vts 𝑛 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑛 · 𝑥 ) ) ) ) d 𝑥 ) ) ) |
27 |
2 1
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ { 𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧 } ) |
28 |
24 26 27
|
rspcdva |
⊢ ( 𝜑 → ( ( ; 1 0 ↑ ; 2 7 ) ≤ 𝑁 → ∃ ℎ ∈ ( ( 0 [,) +∞ ) ↑m ℕ ) ∃ 𝑘 ∈ ( ( 0 [,) +∞ ) ↑m ℕ ) ( ∀ 𝑚 ∈ ℕ ( 𝑘 ‘ 𝑚 ) ≤ ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ∧ ∀ 𝑚 ∈ ℕ ( ℎ ‘ 𝑚 ) ≤ ( 1 . _ 4 _ 1 4 ) ∧ ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) · ( 𝑁 ↑ 2 ) ) ≤ ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ ∘f · ℎ ) vts 𝑁 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑁 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) d 𝑥 ) ) ) |
29 |
3 28
|
mpd |
⊢ ( 𝜑 → ∃ ℎ ∈ ( ( 0 [,) +∞ ) ↑m ℕ ) ∃ 𝑘 ∈ ( ( 0 [,) +∞ ) ↑m ℕ ) ( ∀ 𝑚 ∈ ℕ ( 𝑘 ‘ 𝑚 ) ≤ ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ∧ ∀ 𝑚 ∈ ℕ ( ℎ ‘ 𝑚 ) ≤ ( 1 . _ 4 _ 1 4 ) ∧ ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) · ( 𝑁 ↑ 2 ) ) ≤ ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ ∘f · ℎ ) vts 𝑁 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑁 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) d 𝑥 ) ) |